EC8702: Adhoc and Wireless Sensor Network Department of ECE

UNIT II SENSOR NETWORKS – INTRODUCTION & ARCHITECTURES

Hardware components

A basic sensor node comprises five main components (Figure 2.1):

Controller A controller to process all the relevant data, capable of executing arbitrary code.

Memory Some memory to store programs and intermediate data; usually, different types of memory are used for programs and data.

Sensors and actuators The actual interface to the physical world: devices that can observe or control physical parameters of the environment.

Communication Turning nodes into a network requires a device for sending and receiving infor-mation over a wireless channel.

[image: image4.png]1

	
	
	
	
	Memory
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Communication
	
	Controller
	
	Sensors/
	

	device
	
	
	
	actuators
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	Power supply
	
	
	
	

	
	
	
	
	
	
	
	
	
	

Figure 2.1
Overview of main sensor node hardware components

Power supply As usually no tethered power supply is available, some form of batteries are neces-sary to provide energy. Sometimes, some form of recharging by obtaining energy from the environment is available as well (e.g. solar cells).

Each of these components has to operate balancing the trade-off between as small an energy consumption as possible on the one hand and the need to fulfill their tasks on the other hand. For example, both the communication device and the controller should be turned off as long as possible. To wake up again, the controller could, for example, use a preprogrammed timer to be reactivated after some time. Alternatively, the sensors could be programmed to raise an interrupt if a given event occurs – say, a temperature value exceeds a given threshold or the communication device detects an incoming transmission.

2.1.2 Controller

Microcontrollers versus microprocessors, FPGAs, and ASICs

The controller is the core of a wireless sensor node. It collects data from the sensors, processes this data, decides when and where to send it, receives data from other sensor nodes, and decides on the actuator’s behavior. It has to execute various programs, ranging from time-critical signal processing and communication protocols to application programs; it is the Central Processing Unit (CPU) of the node.

Such a variety of processing tasks can be performed on various controller architectures, repre-senting trade-offs between flexibility, performance, energy efficiency, and costs.

One solution is to use general-purpose processors, like those known from desktop computers. These processors are highly overpowered, and their energy consumption is excessive. But simpler processors do exist, specifically geared toward usage in embedded systems. These processors are commonly referred as microcontrollers. Some of the key characteristics why these microcontrollers are particularly suited to embedded systems are their flexibility in connecting with other devices (like sensors), their instruction set amenable to time-critical signal processing, and their typically low power consumption; they are also convenient in that they often have memory built in. In addition, they are freely programmable and hence very flexible. Microcontrollers are also suitable for WSNs since they commonly have the possibility to reduce their power consumption by going into sleep states where only parts of the controller are active; details vary considerably between different controllers. Details regarding power consumption and energy efficiency are discussed in Section 2.2. One of the main differences to general-purpose systems is that microcontroller-based systems usually do not feature a memory management unit, somewhat limiting the functionality of memory – for example, protected or virtual memory is difficult, if not impossible, to achieve.

A specialized case of programmable processors are Digital Signal Processors (DSPs). They are specifically geared, with respect to their architecture and their instruction set, for processing large amounts of vectorial data, as is typically the case in signal processing applications. In a wireless sensor node, such a DSP could be used to process data coming from a simple analog, wireless communication device to extract a digital data stream. In broadband wireless communication, DSPs are an appropriate and successfully used platform. But in wireless sensor networks, the requirements on wireless communication are usually much more modest (e.g. simpler, easier to process modulations are used that can be efficiently handled in hardware by the communication device itself) and the signal processing tasks related to the actual sensing of data is also not overly complicated. Hence, these advantages of a DSP are typically not required in a WSN node and they are usually not used.

Another option for the controller is to depart from the high flexibility offered by a (fairly general-purpose) microcontroller and to use Field-Programmable Gate Arrays (FPGAs) or Application-Specific Integrated Circuits (ASICs) instead. An FPGA can be reprogrammed (or rather recon-figured) “in the field” to adapt to a changing set of requirements; however, this can take time and energy – it is not practical to reprogram an FPGA at the same frequency as a microcontroller could change between different programs. An ASIC is a specialized processor, custom designed for a given application such as, for example, high-speed routers and switches. The typical trade-off here is loss of flexibility in return for a considerably better energy efficiency and performance. On the other hand, where a microcontroller requires software development, ASICs provide the same functionality in hardware, resulting in potentially more costly hardware development.

 A microcontroller-based architecture is always assumed in WSN.
Some examples for microcontrollers

Microcontrollers that are used in several wireless sensor node prototypes include the Atmel proces-sor or Texas Instrument’s MSP 430. In older prototypes, the Intel StrongArm processors have also been used, but this is no longer considered as a practical option; it is included here for the sake of completeness. Nonetheless, as the principal properties of these processors and controllers are quite similar, conclusions from these earlier research results still hold to a large degree.

Intel StrongARM

The Intel StrongARM [379] is, in WSN terms, a fairly high-end processor as it is mostly geared toward handheld devices like PDAs. The SA-1100 model has a 32-bit Reduced Instruction Set Computer (RISC) core, running at up to 206 MHz.

Texas Instruments MSP 430

Texas Instrument provides an entire family of microcontrollers under the family designation MSP 430 [814]. Unlike the StrongARM, it is explicitly intended for embedded applications. Accordingly, it runs a 16-bit RISC core at considerably lower clock frequencies (up to 4 MHz) but comes with a wide range of interconnection possibilities and an instruction set amenable to easy handling of peripherals of different kinds. It features a varying amount of on-chip RAM (sizes are 2 – 10 kB), several 12-bit analog/digital converters, and a real-time clock. It is certainly powerful enough to handle the typical computational tasks of a typical wireless sensor node (possibly with the exception of driving the radio front end, depending on how it is connected – bit or byte interface – to the controller).

Atmel ATmega

The Atmel ATmega 128L [28] is an 8-bit microcontroller, also intended for usage in embedded applications and equipped with relevant external interfaces for common peripherals.

2.1.3 Memory

Evidently, there is a need for Random Access Memory (RAM) to store intermediate sensor readings, packets from other nodes, and so on. While RAM is fast, its main disadvantage is that it loses its content if power supply is interrupted.
Program code can be stored in Read-Only Memory (ROM) or, more typically, in Electrically Erasable Pro-grammable Read-Only Memory (EEPROM) or flash memory (the later being similar to EEPROM but allowing data to be erased or written in blocks instead of only a byte at a time).
 Flash memory can also serve as intermediate storage of data in case RAM is insufficient or when the power supply of RAM should be shut down for some time. The long read and write access delays of flash memory should be taken into account, as well as the high required energy.

Correctly dimensioning memory sizes, especially RAM, can be crucial with respect to manufac-turing costs and power consumption. However, the memory requirements are very much application dependent.

2.1.4 Communication device

Choice of transmission medium

The communication device is used to exchange data between individual nodes. In some cases, wired communication can actually be the method of choice and is frequently applied in many sensor networklike settings (using field buses like Profibus, LON, CAN, or others). The communication devices for these networks are custom off-the-shelf components.

The first choice to make is that of the transmission medium – the usual choices include radio frequencies, optical communi-cation, and ultrasound;
other media like magnetic inductance are only used in very specific cases. Of these choices, Radio Frequency (RF)-based communication is by far the most relevant one as it best fits the requirements of most WSN applications: It provides relatively long range and high data rates, acceptable error rates at reasonable energy expenditure, and does not require line of sight between sender and receiver. Thus, RF-based communication and transceiver will receive the lion share of attention here; other media are only treated briefly at the end of this section.

Wireless sensor networks typically use communication frequencies between about 433 MHz and 2.4 GHz.

Transceivers

For actual communication, both a transmitter and a receiver are required in a sensor node. The essential task is to convert a bit stream coming from a microcontroller (or a sequence of bytes or frames) and convert them to and from radio waves. For practical purposes, it is usually convenient to use a device that combines these two tasks in a single entity. Such combined devices are called transceivers. Usually, half-duplex operation is realized since transmitting and receiving at the same time on a wireless medium is impractical in most cases (the receiver would only hear the own transmitter anyway).

A range of low-cost transceivers is commercially available that incorporate all the circuitry required for transmitting and receiving – modulation, demodulation, amplifiers, filters, mixers, and so on. For a judicious choice, the transceiver’s tasks and its main characteristics have to be understood.

Transceiver tasks and characteristics

To select appropriate transceivers, a number of characteristics should be taken into account. The most important ones are:

Service to upper layer A receiver has to offer certain services to the upper layers, most notably to the Medium Access Control (MAC) layer. Sometimes, this service is packet oriented; sometimes, a transceiver only provides a byte interface or even only a bit interface to the microcontroller.

In any case, the transceiver must provide an interface that somehow allows the MAC layer to initiate frame transmissions and to hand over the packet from, say, the main memory of the sensor node into the transceiver (or a byte or a bit stream, with additional processing required on the microcontroller). In the other direction, incoming packets must be streamed into buffers accessible by the MAC protocol.

Power consumption and energy efficiency The simplest interpretation of energy efficiency is the energy required to transmit and receive a single bit. Also, to be suitable for use in WSNs, transceivers should be switchable between different states, for example, active and sleeping. The idle power consumption in each of these states and during switching between them is very important – details are discussed in Section 2.2.

Carrier frequency and multiple channels Transceivers are available for different carrier frequen-cies; evidently, it must match application requirements and regulatory restrictions. It is often useful if the transceiver provides several carrier frequencies (“channels”) to choose from, helping to alleviate some congestion problems in dense networks. Such channels or “sub-bands” are relevant, for example, for certain MAC protocols (FDMA or multichannel CSMA/ ALOHA techniques, see Chapter 5).

State change times and energy A transceiver can operate in different modes: sending or receiv-ing, use different channels, or be in different power-safe states. In any case, the time and the energy required to change between two such states are important figures of merit. The turnaround time between sending and receiving, for example, is important for various medium access protocols (see Chapter 5).

Data rates Carrier frequency and used bandwidth together with modulation and coding determine the gross data rate. Typical values are a few tens of kilobits per second – considerably less than in broadband wireless communication, but usually sufficient for WSNs. Different data rates can be achieved, for example, by using different modulations or changing the symbol rate.

Modulations The transceivers typically support one or several of on/off-keying, ASK, FSK, or similar modulations. If several modulations are available, it is convenient for experiments if they are selectable at runtime even though, for real deployment, dynamic switching between modulations is not one of the most discussed options.

Coding Some transceivers allow various coding schemes to be selected.

Transmission power control Some transceivers can directly provide control over the transmission power to be used; some require some external circuitry for that purpose. Usually, only a

discrete number of power levels are available from which the actual transmission power can be chosen. Maximum output power is usually determined by regulations.

Noise figure The noise figure NF of an element is defined as the ratio of the Signal-to-Noise Ratio (SNR) ratio SNRI at the input of the element to the SNR ratio SNRO at the element’s output:

NF =
SNRI

[image: image5.png]

SNRO

It describes the degradation of SNR due to the element’s operation and is typically given in dB:

NF dB = SNRI dB − SNRO dB

Gain The gain is the ratio of the output signal power to the input signal power and is typically given in dB. Amplifiers with high gain are desirable to achieve good energy efficiency.

Power efficiency The efficiency of the radio front end is given as the ratio of the radiated power to the overall power consumed by the front end; for a power amplifier, the efficiency describes the ratio of the output signal’s power to the power consumed by the overall power amplifier.

Receiver sensitivity The receiver sensitivity (given in dBm) specifies the minimum signal power at the receiver needed to achieve a prescribed Eb /N0 or a prescribed bit/packet error rate. Better sensitivity levels extend the possible range of a system.

Range While intuitively the range of a transmitter is clear, a formal definition requires some care. The range is considered in absence of interference; it evidently depends on the maximum transmission power, on the antenna characteristics, on the attenuation caused by the environ-ment, which in turn depends on the used carrier frequency, on the modulation/coding scheme that is used, and on the bit error rate that one is willing to accept at the receiver. It also depends on the quality of the receiver, essentially captured by its sensitivity. Typical values are difficult to give here, but prototypes or products with ranges between a few meters and several hundreds of meters are available.

Blocking performance The blocking performance of a receiver is its achieved bit error rate in the presence of an interferer. More precisely, at what power level can an interferer (at a fixed distance) send at a given offset from the carrier frequency such that target BER can still be met? An interferer at higher frequency offsets can be tolerated at large power levels. Evidently, blocking performance can be improved by interposing a filter between antenna and transceiver.

An important special case is an adjacent channel interferer that transmits on neighboring frequencies. The adjacent channel suppression describes a transceiver’s capability to filter out signals from adjacent frequency bands (and thus to reduce adjacent channel interference) has a direct impact on the observed Signal to Interference and Noise Ratio (SINR).

Out of band emission The inverse to adjacent channel suppression is the out of band emission of a transmitter. To limit disturbance of other systems, or of the WSN itself in a multichannel setup, the transmitter should produce as little as possible of transmission power outside of its prescribed bandwidth, centered around the carrier frequency.

Carrier sense and RSSI In many medium access control protocols, sensing whether the wireless channel, the carrier, is busy (another node is transmitting) is a critical information. The

receiver has to be able to provide that information. The precise semantics of this carrier-sense signal depends on the implementation. For example, the IEEE 802.15.4 standard distinguishes the following modes:

The received energy is above threshold; however, the underlying signal does not need to comply with the modulation and spectral characteristics.
A carrier has been detected, that is, some signal which complies with the modulation.
Carrier detected and energy is present.
Also, the signal strength at which an incoming data packet has been received can provide useful information (e.g. a rough estimate about the distance from the transmitter assuming the transmission power is known); a receiver has to provide this information in the Received Signal Strength Indicator (RSSI).

Frequency stability The frequency stability denotes the degree of variation from nominal center frequencies when environmental conditions of oscillators like temperature or pressure change. In extreme cases, poor frequency stability can break down communication links, for example, when one node is placed in sunlight whereas its neighbor is currently in the shade.

Voltage range Transceivers should operate reliably over a range of supply voltages. Otherwise, inefficient voltage stabilization circuitry is required.

An important peculiarity and a key difference compared to other communication devices is the fact that these simple transceivers often lack a unique identifier: each Ethernet device, for example, has a MAC-level address that uniquely identifies this individual device. For simple transceivers, the additional cost of providing such an identifier is relatively high with respect to the device’s total costs, and thus, unique identifiers cannot be relied upon to be present in all devices. The availability of such device identifiers is very useful in many communication protocols and their absence will have considerable consequences for protocol design.

Improving these commercial designs to provide better performance at lower energy consumption and reduced cost is an ongoing effort by a large research community, facing challenges such as low transistor transconductance or limitations of integrated passive RF components.

Transceiver structure

A fairly common structure of transceivers is into the Radio Frequency (RF) front end and the baseband part:

the radio frequency front end performs analog signal processing in the actual radio frequency band, whereas
the baseband processor performs all signal processing in the digital domain and communicates with a sensor node’s processor or other digital circuitry.
Between these two parts, a frequency conversion takes place, either directly or via one or several Intermediate Frequencys (IFs).
 The boundary between the analog and the digital domain is constituted by Digital/Analog Converters (DACs) and Analog/Digital Converters (ADCs).

The RF front end performs analog signal processing in the actual radio frequency band, for example in the 2.4 GHz Industrial, Scientific, and Medical (ISM) band; it is the first stage of the interface between the electromagnetic waves and the digital signal processing of the further transceiver stages . Some important elements of an RF front ends architecture are sketched in Figure
The Power Amplifier (PA) accepts upconverted signals from the IF or baseband part and amplifies them for transmission over the antenna.
The Low Noise Amplifier (LNA) amplifies incoming signals up to levels suitable for further processing without significantly reducing the SNR. The range of powers of the incoming signals varies from very weak signals from nodes close to the reception boundary to strong signals from nearby nodes; this range can be up to 100 dB. Without management actions, the LNA is active all the time and can consume a significant fraction of the transceiver’s energy.
Elements like local oscillators or voltage-controlled oscillators and mixers are used for frequency conversion from the RF spectrum to intermediate frequencies or to the baseband. The incoming signal at RF frequencies fRF is multiplied in a mixer with a fixed-frequency signal from the local oscillator (frequency fLO). The resulting intermediate-frequency signal has frequency fLO − fRF. Depending on the RF front end architecture, other elements like filters are also present.
The efficiency of RF front ends in wireless sensor networks is discussed in Section 2.2.

Transceiver operational states

Many transceivers can distinguish four operational states

Radio frontend

[image: image6.png]mf

e

Low noise

amplifier

 (LNA)

 Antenna

interface

 Power

amplifier

(PA)

 Frequency
 conversion

Intermediate frequency and baseband procesing

Figure 2.2
RF front end

Transmit In the transmit state, the transmit part of the transceiver is active and the antenna radiates energy.

Receive In the receive state the receive part is active.

Idle A transceiver that is ready to receive but is not currently receiving anything is said to be in an idle state. In this idle state, many parts of the receive circuitry are active, and others can be switched off. For example, in the synchronization circuitry, some elements concerned with acquisition are active, while those concerned with tracking can be switched off and activated only when the acquisition has found something. MYERS et al. [580] also discuss techniques for switching off parts of the acquisition circuitry for IEEE 802.11 transceivers. A major source of power dissipation is leakage.

Sleep In the sleep state, significant parts of the transceiver are switched off. There are transceivers offering several different sleep states, see reference [580] for a discussion of sleep states for IEEE 802.11 transceivers. These sleep states differ in the amount of circuitry switched off and in the associated recovery times and startup energy [855]. For example, in a complete power down of the transceiver, the startup costs include a complete initialization as well as configuration of the radio, whereas in “lighter” sleep modes, the clock driving certain transceiver parts is throttled down while configuration and operational state is remembered.

The sensor node’s protocol stack and operating software must decide into which state the trans-ceiver is switched, according to the current and anticipated communications needs. One problem complicating this decision is that the operation of state changes also dissipate power [670]. For example, a transceiver waking up from the sleep mode to the transmit mode requires some startup time and startup energy, for example, to ramp up phase-locked loops or voltage-controlled oscilla-tors. During this startup time, no transmission or reception of data is possible [762]. The problem of scheduling the node states (equivalently: switching on and off node/transceiver components) so as to minimize average power consumption (also called power management) is rather complex, an in-depth treatment can be found in reference [85], and a further reference is [741].

Advanced radio concepts

Apart from these basic transceiver concepts, a number of advanced concepts for radio communi-cation are the objectives of current research.

Wakeup radio

Looking at the transceiver concepts described above, one of the most power-intensive operations is waiting for a transmission to come in, ready to receive it. During this time, the receiver circuit must be powered up so that the wireless channel can be observed, spending energy without any immediate benefit.

While it seems unavoidable to provide a receiver with power during the actual reception of a packet, it would be desirable not to have to invest power while the node is only waiting for a packet to come in.
A receiver structure is necessary that does not need power but can detect when a packet starts to arrive. To keep this specialized receiver simple, it suffices for it to raise an event to notify other components of an incoming packet; upon such an event, the main receiver can be turned on and perform the actual reception of the packet.

Such receiver concepts are called wakeup receivers: Their only purpose is to wake up the main receiver without needing (a significant amount of) power to do - so state a target power consumption of less than 1 W. In the simplest case, this wakeup would happen for every packet; a more sophisticated version would be able to decide,using proper address information at the start of the packet, whether the incoming packet is actually destined for this node and only then wake up the main receiver.

Such wakeup receivers are tremendously attractive as they would do away with one of the main problems of WSNs: the need to be permanently able to receive in a network with low average traffic. It would considerably simplify a lot of the design problems of WSNs, in particular of the medium access control –

Spread-spectrum transceivers

Simple transceiver concepts, based on modulations like Amplitude Shift Keying (ASK) or Fre-quency Shift Keying (FSK), can suffer from limited performance, especially in scenarios with a lot of interference.
To overcome this limitation, the use of spread-spectrum transceivers has been proposed by some researchers. These transceivers, however, suffer mostly from complex hardware and consequently higher prices, which has prevented them from becoming a mainstream concept for WSNs so far..

Ultrawideband communication

UltraWideBand (UWB) communication is a fairly radical change from conventional wireless com-munication as outlined above. Instead of modulating a digital signal onto a carrier frequency, a very large bandwidth is used to directly transmit the digital sequence as very short impulses (to form nearly rectangular impulses requires considerable bandwidth, because of which this con-cept is not used traditionally)
Accordingly, these impulses occupy a large spectrum starting from a few Hertz up to the range of several GHz. The challenge is to syn-chronize sender and receiver sufficiently (to an accuracy of trillionth of seconds) so that the impulses can be correctly detected. A side effect of precisely timed impulses is that UWB is fairly resistant to multipath fading which can be a serious obstacle for carrier-based radio communication.

Using such a large bandwidth, an ultrawideband communication will overlap with the spectrum of a conventional radio system. But, because of the large spreading of the signal, a very small transmission power suffices. This power can be small enough so that it vanishes in the noise floor from the perspective of a traditional radio system.

For a communication system, the effect is that a very high data rate can be realized over short distances; what is more, UWB communication can relatively easily penetrate obstacles such as doors, which are impermeable to narrowband radio waves. For a WSN, the high data rate is not strictly necessary but can be leveraged to reduce the on-time of the transceivers. The nature of UWB also allows to precisely measure distances (with claimed precision of centimeters).

These desirable features of UWB communication have to be balanced against the difficulties of building such transceivers at low-cost and low-power consumption. More precisely, an UWB transmitter is actually relatively simple since it does not need oscillators or related circuitry found in transmitters for a carrier-frequency-based transmitter. The receivers, on the other hand, require complex timing synchronization. As of this writing, UWB transceivers have not yet been used in prototypes for wireless sensor nodes.

Nonradio frequency wireless communication

While most of the wireless sensor network work has focused on the use of radio waves as communication media, other options exists. In particular, optical communication and ultrasound communication have been considered as alternatives.

Optical

Its main advantage is the very small energy per bit required for both generating and detecting optical light – simple Light-Emitting Diodes (LEDs) are good examples for high-efficiency senders. The required circuitry for an optical transceiver is also simpler and the device as a whole can be smaller than the radio frequency counterpart. Also, communication can take place concurrently with only negligible interference. The evident disadvantage, however, is that communicating peers need to have a line of sight connection and that optical communication is more strongly influenced by weather conditions.

As a case in point, consider the so-called “corner-cube reflector”: three mirrors placed at right angles to each other in a way that each beam of light directed at it is reflected back to its source (as long as it comes from a cone centered around the main diagonal of the cube) – an example for such a structure is shown in Figure 2.3. This reflection property holds only as long as the mirrors are exactly at right angles. When one the mirrors is slightly moved, a signal can be modulated onto an incoming ray of light, effectively transmitting information back to the sender. In fact, data rates up to 1 kb/s have been demonstrated using such a device. Its main advantage is that the mechanical movement of one such mirror only takes very little energy, compared to actually generating a beam of light or even a radio wave. Hence, a passive readout of sensor nodes can be done very energy efficiently over long distances as long as the reader has enough power to produce the laser beam (up to 150 m have been demonstrated using a 5 mW laser).

Ultrasound

Both radio frequency and optical communication are suitable for open-air environments. In some application scenarios, however, sensor nodes are used in environments where radio or optical communication is not applicable because these waves do not penetrate the surrounding medium. One such medium is water, and an application scenario is the surveillance of marine ground floor erosion to help in the construction of offshore wind farms. Sensors are deployed on the marine ground floor and have to communicate amongst themselves. In such an underwater environment, ultrasound is an attractive communication medium as it travels relatively long distances at comparably low power.

A further aspect of ultrasound is its use in location systems as a secondary means of communi-cation with a different propagation speed. Details will be discussed in Chapter 9.

Some examples of radio transceivers

RFM TR1000 family

The TR1000 family of radio transceivers from RF Monolithics2 is available for the 916 MHz and 868 MHz frequency range. It works in a 400 kHz wide band centered at, for example, 916.50 MHz. It is intended for short-range radio communication with up to 115.2 kbps. The modulation is either on-off-keying (at a maximum rate of 30 kbps) or ASK; it also provides a dynamically tunable output power. The maximum radiated power is given in the data sheet [690] as 1.5 dBm, ≈ 1.4 mW, whereas in the Mica motes a number of 0.75 mW is given [351]. The transceiver offers received signal strength information. It is attractive because of its low-power consumption in both send and receive modes and especially in sleep mode. Details about parameters and configurations can be found in the data sheet [690].

Hardware accelerators (Mica motes)

The Mica motes use the RFM TR1000 transceiver and contain also a set of hardware accelerators. On the one hand, the transceiver offers a very low-level interface, giving the microcontroller tight control over frame formats, MAC protocols, and so forth. On the other hand, framing and MAC can be very computation intensive, for example, for computing checksums, for making bytes out of serially received bits or for detecting Start Frame Delimiters (SFDs) in a stream of symbols. The hardware accelerators offer some of these primitive computations in hardware, right at the disposal of the microcontroller.

Chipcon CC1000 and CC2420 family

Chipcon3 offers a wide range of transceivers that are appealing for use in WSN hardware. To name but two examples: The CC1000 operates in a wider frequency range, between 300 and 1000 MHz,
programmable in steps of 250 Hz. It uses FSK as modulation, provides RSSI, and has programmable output power. An interesting feature is the possibility to compensate for crystal temperature drift. It should also be possible to use it in frequency hopping protocols. Details can be found in the data sheet[157].

The CC2420 [158] is a more complicated device. It implements the physical layer as prescribed by the IEEE 802.15.4 standard with the required support for this standard’s MAC protocol. In fact, the company claims that this is the first commercially available single-chip transceiver for IEEE 802.15.4. As a consequence of implementing this standard, the transceiver operates in the 2.4 GHz band and features the required DSSS modem, resulting in a data rate of 250 kbps. It achieves this at still relatively low-power consumption, although not quite on par with the simpler transceivers described so far.

Infineon TDA 525x family

The Infineon TDA 525x family provides flexible, single-chip, energy-efficient transceivers. The TDA 5250 [375], as an example, is a 868 – 870 MHztransceiver providing both ASK and FSK modulation, it has a highly efficient power amplifier, RSSI information, a tunable crystal oscillator, an onboard data filter, and an intelligent power-down feature. One of the interesting features is a self-polling mechanism, which can very quickly determine data rate. Compared to some other transceiver, it also has an excellent blocking performance that makes it quite resistant to interference.

IEEE 802.15.4/Ember EM2420 RF transceiver

The IEEE 802.15.4 low-rate Wireless Personal Area Network (WPAN) [468] works in three differ-ent frequency bands and employs a DSSS scheme. Some basic data can be found in Table 2.1. For one particular RF front-end design, the Ember4 EM2420 RF Transceiver [240], some numbers on power dissipation are available. For a radiated power of −0.5 dBm (corresponding to ≈0.9 mW) and with a supply voltage of 3.3 V, the transmit mode draws a current of 22.7 mA, correspond-ing to ≈74.9 mW, whereas in the receive mode, 25.2 mA current are drawn, corresponding to ≈83.2 mW. In the sleep mode, only 12 A are drawn.

In all bands, DSSS is used. In the 868 MHz band, only a single channel with a data rate of 20 kbps is available, in the 915 MHz band ten channels of 40kbps each and in the 2.4 GHz band 16 channels of 250 kbps are available. In the lower two bands, the chips are Binary Phase Shift Keying (BPSK)-modulated, and the data symbols are encoded differentially. A pseudonoise sequence of 15 chips is used for every bit. The modulation scheme in the 2.4 GHz band is a little bit more complicated. As can be observed from the table, a channel symbol consists of four user bits. These 16 different symbol values are distinguished by using 16 different nearly orthogonal pseudorandom chip sequences. The resulting chip sequence is then modulated using a modulation scheme called offset -Quaternary Phase Shift Keying (QPSK). Some of the design rationale for this modulation scheme is also given in reference [115, Chap. 3].

National Semiconductor LMX3162

The radio hardware of the µAMPS-1 node [563, 762, 872] consists of a digital baseband processor implemented on an FPGA, whereas for the RF front end, a (now obsolete) National Semiconductor LMX3162 transceiver [588] is used. The LMX3162 operates in the 2.4 GHz band and offers six different radiated power levels from 0 dBm up to 20 dBm. To transmit data, the baseband processor can control an externally controllable Voltage-Controlled Oscillator (VCO). The main components of the RF front end (phase-lock loop, transmit and receive circuitry) can be shut off. The baseband processor controls the VCO and also provides timing information to a TDMA-based MAC protocol (see Chapter 5). For data transmission, FSK with a data rate of 1 Mbps is used.

Conexant RDSSS9M

The WINS sensor node of Rockwell5 carries a Conexant RDSSS9M transceiver, consisting of the RF part working in the ISM band between 902 and 928 MHzand a microcontroller (a 65C02) responsible for processing DSSS signals with a spreading factor of 12 bits per chip. The data rate is 100 kbps. The RF front end offers radiated power levels of 1 mW, 10 mW and 100 mW. A number of 40 sub-bands are available, which can be freely selected. The microcontroller implements portions of a MAC protocol also.

2.1.5 Sensors and actuators

Without the actual sensors and actuators, a wireless sensor network would be beside the point entirely. But as the discussion of possible application areas has already indicated, the possible range of sensors is vast. It is only possible to give a rough idea on which sensors and actuators can be used in a WSN.

Sensors

Sensors can be roughly categorized into three categories (following reference [670]):

Passive, omnidirectional sensors These sensors can measure a physical quantity at the point of the sensor node without actually manipulating the environment by active probing – in this sense, they are passive. Moreover, some of these sensors actually are self-powered in the sense that they obtain the energy they need from the environment – energy is only needed to amplify their analog signal. There is no notion of “direction” involved in these mea-surements. Typical examples for such sensors include thermometer, light sensors, vibration, microphones, humidity, mechanical stress or tension in materials, chemical sensors sensitive for given substances, smoke detectors, air pressure, and so on.

Passive, narrow-beam sensors These sensors are passive as well, but have a well-defined notion of direction of measurement. A typical example is a camera, which can “take measurements” in a given direction, but has to be rotated if need be.

Active sensors This last group of sensors actively probes the environment, for example, a sonar or radar sensor or some types of seismic sensors, which generate shock waves by small

explosions. These are quite specific – triggering an explosion is certainly not a lightly under-taken action – and require quite special attention.

In practice, sensors from all of these types are available in many different forms with many indi-vidual peculiarities. Obvious trade-offs include accuracy, dependability, energy consumption, cost, size, and so on – all this would make a detailed discussion of individual sensors quite ineffective.

Overall, most of the theoretical work on WSNs considers passive, omnidirectional sensors. Narrow-beam-type sensors like cameras are used in some practical testbeds, but there is no real systematic investigation on how to control and schedule the movement of such sensors. Active sensors are not treated in the literature to any noticeable extent.

An assumption occasionally made in the literature is that each sensor node has a certain area of coverage for which it can reliably and accurately report the particular quantity that it is observing.

Actuators

Actuators are just about as diverse as sensors, yet for the purposes of designing a WSN, they are a bit simpler to take account of: In principle, all that a sensor node can do is to open or close a switch or a relay or to set a value in some way. Whether this controls a motor, a light bulb, or some other physical object is not really of concern to the way communication protocols are designed.

I

2.1.6 Power supply of sensor nodes

For untethered wireless sensor nodes, the power supply is a crucial system component. There are essentially two aspects: First, storing energy and providing power in the required form; second, attempting to replenish consumed energy by “scavenging” it from some node-external power source over time.

Storing power is conventionally done using batteries. As a rough orientation, a normal AA battery stores about 2.2 – 2.5 Ah at 1.5 V. Battery design is a science and industry in itself, and energy scavenging has attracted a lot of attention in research.

Storing energy: Batteries

Traditional batteries

The power source of a sensor node is a battery, either nonrechargeable (“primary batteries”) or, if an energy scavenging device is present on the node, also rechargeable (“secondary batteries”).

	
	
	
	

	
	
	

	
	 Energy densities for various primary

	
	and secondary battery types [703]
	
	

	
	
	
	
	

	
	
	Primary batteries
	
	

	
	
	
	
	
	

	
	Chemistry
	Zinc-air
	Lithium
	Alkaline

	
	Energy (J/cm3)
	3780
	2880
	1200
	

	
	
	
	
	

	
	
	Secondary batteries
	
	

	
	
	
	
	
	

	
	Chemistry
	Lithium
	NiMHd
	NiCd

	
	Energy (J/cm3)
	1080
	860
	650
	

	
	
	
	
	
	

In some form or other, batteries are electro-chemical stores for energy – the chemicals being the main determining factor of battery technology.

Upon these batteries, very tough requirements are imposed:

Capacity They should have high capacity at a small weight, small volume, and low price. The main metric is energy per volume, J/cm3. Table 2.2 shows some typical values of energy densities, using traditional, macroscale battery technologies. In addition, research on “microscale” batteries, for example, deposited directly onto a chip, is currently ongoing.

Capacity under load They should withstand various usage patterns as a sensor node can consume quite different levels of power over time and actually draw high current in certain operation modes.

For most technologies, the larger the battery, the more power can be delivered instantaneously. In addition, the rated battery capacity specified by a manufacturer is only valid as long as maximum discharge currents are not exceeded, lest capacity drops or even premature battery failure occurs
Self-discharge Their self-discharge should be low; they might also have to last for a long time (using certain technologies, batteries are operational only for a few months, irrespective of whether power is drawn from them or not).

Zinc-air batteries, for example, have only a very short lifetime (on the order of weeks), which offsets their attractively high energy density.

Efficient recharging Recharging should be efficient even at low and intermittently available recharge power; consequently, the battery should also not exhibit any “memory effect”.

Some of the energy-scavenging techniques described below are only able to produce cur-rent in the µA region (but possibly sustained) at only a few volts at best. Current battery technology would basically not recharge at such values.

Relaxation Their relaxation effect – the seeming self-recharging of an empty or almost empty battery when no current is drawn from it, based on chemical diffusion processes within the cell – should be clearly understood. Battery lifetime and usable capacity is considerably extended if this effect is leveraged. As but one example, it is possible to use multiple batteries in parallel and “schedule” the discharge from one battery to another, depending on relaxation properties and power requirements of the operations to be supported

Unconventional energy stores

In a wider sense, fuel cells also qualify as an electro-chemical storage of energy, directly producing electrical energy by oxidizing hydrogen or hydrocarbon fuels. Fuel cells actually have excellent energy densities (e.g. methanol as a fuel stores 17.6 kJ/cm3), but currently available systems still require a nonnegligible minimum size for pumps, valves, and so on.
A slightly more traditional approach to using energy stored in hydrocarbons is to use miniature versions of heat engines, for example, a turbine. Shrinking such heat engines to the desired sizes still requires a considerable research effort in MicroElectroMechanical Systems (MEMSs); predictions regarding power vary between 0.1 – 10 W at sizes of about 1 cc. And lastly, even radioactive substances have been proposed as an energy store.
Another option are so-called “gold caps”, high-quality and high-capacity capacitors, which can store relatively large amounts of energy, can be easily and quickly recharged, and do not wear out over time.

DC – DC Conversion

Unfortunately, batteries (or other forms of energy storage) alone are not sufficient as a direct power source for a sensor node. One typical problem is the reduction of a battery’s voltage as its capacity drops. Consequently, less power is delivered to the sensor node’s circuits, with immediate consequences for oscillator frequencies and transmission power – a node on a weak battery will have a smaller transmission range than one with a full battery, possibly throwing off any calibrations done for the range at full battery ranges.

A DC – DC converter can be used to overcome this problem by regulating the voltage delivered to the node’s circuitry.
To ensure a constant voltage even though the battery’s supply voltage drops, the DC – DC converter has to draw increasingly higher current from the battery when the battery is already becoming weak, speeding up battery death .
Also, the DC – DC converter does consume energy for its own operation, reducing overall efficiency. But the advantages of predictable operation during the entire life cycle can outweigh these disadvantages.

Energy scavenging

Photovoltaics The well-known solar cells can be used to power sensor nodes. The available power depends on whether nodes are used outdoors or indoors, and on time of day and whether for outdoor usage. Different technologies are best suited for either outdoor or indoor usage. The resulting power is somewhere between 10 W/cm2 indoors and 15 mW/cm2 outdoors. Single cells achieve a fairly stable output voltage of about 0.6 V (and have therefore to be used in series) as long as the drawn current does not exceed a critical threshold, which depends, among other factors, on the light intensity. Hence, solar cells are usually used to recharge secondary batteries. Best trade-offs between complexity of recharging circuitry, solar cell efficiency, and battery lifetime are still open questions.

Temperature gradients Differences in temperature can be directly converted to electrical energy. Theoretically, even small difference of, for example, 5 K can produce considerable power, but practical devices fall very short of theoretical upper limits (given by the Carnot efficiency).

Seebeck effect-based thermoelectric generators are commonly considered; one example is a generator, which will be commercially available soon, that achieves about 80 W/cm2 at about 1 V from a 5 Kelvin temperature difference.7

Vibrations One almost pervasive form of mechanical energy is vibrations: walls or windows in buildings are resonating with cars or trucks passing in the streets, machinery often has low-frequency vibrations, ventilations also cause it, and so on. The available energy depends on both amplitude and frequency of the vibration and ranges from about 0.1 W/cm3 up to 10, 000 W/cm3 for some extreme cases (typical upper limits are lower).

Converting vibrations to electrical energy can be undertaken by various means, based on electromagnetic, electrostatic, or piezoelectric principles. Figure 2.4 shows, as an example, a generator based on a variable capacitor [549]. Practical devices of 1 cm3 can produce about

W/cm3 from 2.25 m/s2, 120 Hz vibration sources, actually sufficient to power simple wireless transmitters.

Pressure variations Somewhat akin to vibrations, a variation of pressure can also be used as a power source. Such piezoelectric generators are in fact used already. One well-known example is the inclusion of a piezoelectric generator in the heel of a shoe, to generate power as a human walks about . This device can produce, on average, 330 W/cm2. It is, however, not clear how such technologies can be applied to WSNs.

Flow of air/liquid Another often-used power source is the flow of air or liquid in wind mills or turbines. The challenge here is again the miniaturization, but some of the work on millimeter-scale MEMS gas turbines might be reusable [243]. However, this has so far not produced any notable results.

	
	
	

	
	
	

	
	

2.2 Energy consumption of sensor nodes

2.2.1 Operation states with different power consumption

As the previous section has shown, energy supply for a sensor node is at a premium: batteries have small capacity, and recharging by energy scavenging is complicated and volatile. Hence, the energy consumption of a sensor node must be tightly controlled. The main consumers of energy are the controller, the radio front ends, to some degree the memory, and, depending on the type, the sensors.

To give an example, consider the energy consumed by a microcontroller per instruction. A typical ball park number is about 1 nJ per instruction. To put this into perspective with the battery capacity numbers from Section 2.1.6, assume a battery volume of one cubic millimeter, which is about the maximum possible for the most ambitious visions of “smart dust”. Such a battery could store about 1 J. To use such a battery to power a node even only a single day, the node must not consume continuously more than 1/(24 · 60 · 60) Ws/s ≈ 11.5 W. No current controller, let alone an entire node, is able to work at such low-power levels.

One important contribution to reduce power consumption of these components comes from chip-level and lower technologies: Designing low-power chips is the best starting point for an energy-efficient sensor node. But this is only one half of the picture, as any advantages gained by such designs can easily be squandered when the components are improperly operated.

The crucial observation for proper operation is that most of the time a wireless sensor node has nothing to do. Hence, it is best to turn it off. Naturally, it should be able to wake up again, on the basis of external stimuli or on the basis of time. Therefore, completely turning off a node is not possible, but rather, its operational state can be adapted to the tasks at hand. Introducing and using multiple states of operation with reduced energy consumption in return for reduced functionality is the core technique for energy-efficient wireless sensor node.

These modes can be introduced for all components of a sensor node, in particular, for controller, radio front end, memory, and sensors. Different models usually support different numbers of such sleep states with different characteristics; some examples are provided in the following sections. For a controller, typical states are “active”, “idle”, and “sleep”; a radio modem could turn transmitter, receiver, or both on or off; sensors and memory could also be turned on or off. The usual terminology is to speak of a “deeper” sleep state if less power is consumed.

While such a graded sleep state model is straightforward enough, it is complicated by the fact that transitions between states take both time and energy. The usual assumption is that the deeper the sleep state, the more time and energy it takes to wake up again to fully operational state (or to another, less deep sleep state). Hence, it may be worthwhile to remain in an idle state instead of going to deeper sleep states even from an energy consumption point of view.

Figure 2.3 illustrates this notion based on a commonly used model
. At time t1, the decision whether or not a component (say, the microcontroller) is to be put into sleep mode should be taken to reduce power consumption from Pactive to Psleep. If it remains active and the next event occurs at time tevent, then a total energy of Eactive = Pactive(tevent − t1) has be
spent uselessly idling. Putting the component into sleep mode, on the other hand, requires a time τdown until sleep mode has been reached; as a simplification, assume that the average power consumption during this phase is (Pactive + Psleep)/2. Then, Psleep is consumed until tevent.
 In total, τdown(Pactive + Psleep)/2 + (tevent − t1 − τdown)Psleep energy is required in sleep mode as opposed to (tevent − t1)Pactive when remaining active. The energy saving is thus

Esaved =(tevent − t1)Pactive − τdown(Pactive + Psleep)/2 + (tevent − t1 − τdown)Psleep).

Once the event to be processed occurs, however, an additional overhead of

Eoverhead = τup(Pactive + Psleep)/2,

[image: image7.png]e

]

	Esaved
	Eoverhead

active
Psleep

	t1 τ
	tevent τ
	Time

	down
	up
	

(2.2)

Figure 2.3
Energy savings and overheads for sleep modes

is incurred to come back to operational state before the event can be processed, again making a simplifying assumption about average power consumption during makeup. This energy is indeed an overhead since no useful activity can be undertaken during this time. Clearly, switching to a sleep mode is only beneficial if Eoverhead < Esaved or, equivalently, if the time to the next event is sufficiently large:

	1
	τdown +
	P
	active +
	P
	sleep
	
	.
	(2.3)

	(tevent − t1) >
	
	
	
	
	
	
	τup
	
	

	
	2
	
	P
	active −
	P
	
	
	
	

	
	
	
	
	
	
	sleep
	
	

Careful scheduling of such transitions has been considered from several perspectives – reference [769], for example, gives a fairly abstract treatment – and in fact, a lot of medium access control research in wireless sensor networks can be regarded as the problem of when to turn off the receiver of a node.

2.2.2 Microcontroller energy consumption

Intel StrongARM

The Intel StrongARM provides three sleep modes:

In normal mode, all parts of the processor are fully powered. Power consumption is up to 400 mW.
In idle mode, clocks to the CPU are stopped; clocks that pertain to peripherals are active. Any interrupt will cause return to normal mode. Power consumption is up to 100 mW.
In sleep mode, only the real-time clock remains active. Wakeup occurs after a timer interrupt and takes up to 160 ms. Power consumption is up to 50 W.
Texas Instruments MSP 430

The MSP430 family [814] features a wider range of operation modes: One fully operational mode, which consumes about 1.2 mW (all power values given at 1 MHz and 3 V). There are four sleep modes in total. The deepest sleep mode, LPM4, only consumes 0.3 W, but the controller is only woken up by external interrupts in this mode. In the next higher mode, LPM3, a clock is also still running, which can be used for scheduled wake ups, and still consumes only about 6 W.

Atmel ATmega

The Atmel ATmega 128L [28] has six different modes of power consumption, which are in principle similar to the MSP 430 but differ in some details. Its power consumption varies between 6 mW and 15 mW in idle and active modes and is about 75 W in power-down modes.

Dynamic voltage scaling

A more sophisticated possibility than discrete operational states is to use a continuous notion of functionality/power adaptation by adapting the speed with which a controller operates. The idea is to choose the best possible speed with which to compute a task that has to be completed by a given deadline. One obvious solution is to switch the controller in full operation mode, compute the task at highest speed, and go back to a sleep mode as quickly as possible.

The alternative approach is to compute the task only at the speed that is required to finish it before the deadline. The rationale is the fact that a controller running at lower speed, that is, lower

clock rates, consumes less power than at full speed. This is due to the fact that the supply voltage can be reduced at lower clock rates while still guaranteeing correct operation. This technique is called Dynamic Voltage Scaling (DVS).
This technique is actually beneficial for CMOS chips: As the actual power consumption P depends quadratically on the supply voltage VDD [649], reducing the voltage is a very efficient way to reduce power consumption. Power consumption also depends on the frequency f , hence

∝ f · VDD2.
Consequently, dynamic voltage scaling also reduces energy consumption.

When applying dynamic voltage scaling, care has to be taken to operate the controller within its specifications. There are minimum and maximum clock rates for each device, and for each clock rate, there is a minimum and maximum threshold that must be obeyed. Hence, when there is nothing to process, going into sleep modes is still the only option. Also, using arbitrary voltages requires a quite efficient DC-DC converter to be used

2.2.3 Memory

From an energy perspective, the most relevant kinds of memory are on-chip memory of a microcon-troller and FLASH memory – off-chip RAM is rarely if ever used. In fact, the power needed to drive on-chip memory is usually included in the power consumption numbers given for the controllers.

Hence, the most relevant part is FLASH memory – in fact, the construction and usage of FLASH memory can heavily influence node lifetime. The relevant metrics are the read and write times and energy consumption. All this information is readily available from manufacturers’ data sheets and do vary depending on several factors. Read times and read energy consumption tend to be quite similar between different types of FLASH memory. Writing is somewhat more complicated, as it depends on the granularity with which data can be accessed (individual bytes or only complete pages of various sizes). One means for comparability is to look at the numbers for overwriting the whole chip.
To give a concrete example, consider the energy consumption necessary for reading and writing to the Flash memory used on the Mica nodes [534]. Reading data takes 1.111 nAh, writing requires 83.333 nAh.

Hence, writing to FLASH memory can be a time- and energy-consuming task that is best avoided if somehow possible..

2.2.4 Radio transceivers

A radio transceiver has essentially two tasks: transmitting and receiving data between a pair of nodes. Similar to microcontrollers, radio transceivers can operate in different modes, the simplest ones are being turned on or turned off. To accommodate the necessary low total energy consumption, the transceivers should be turned off most of the time and only be activated when necessary – they work at a low duty cycle. But this incurs additional complexity, time and power overhead that has to be taken into account.

To understand the energy consumption behavior of radio transceivers and their impact on the protocol design, models for the energy consumption per bit for both sending and receiving are required.
Modeling energy consumption during transmission

In principle, the energy consumed by a transmitter is due to two sources:
one part is due to RF signal generation, which mostly depends on chosen modulation and target distance and hence on the transmission power Ptx, that is, the power radiated by the antenna.
 A second part is due to electronic components necessary for frequency synthesis, frequency conversion, filters, and so on. These costs are basically constant.

One of the most crucial decisions when transmitting a packet is thus the choice of Ptx.
Assume that the desired transmission power Ptx is a function of system aspects like energy per bit over noise Eb /N0, the bandwidth efficiency ηBW, the distance and the path loss coefficient γ .
The transmitted power is generated by the amplifier of a transmitter. Its own power consumption Pamp depends on its architecture, but for most of them, their consumed power depends on the power they are to generate. In the most simplistic models, these two values are proportional to each other, but this is an oversimplification. A more realistic model assumes that a certain constant power level is always required irrespective of radiated power, plus a proportional offset:

	Pamp = αamp + βampPtx.
	(2.4)

where αamp and βamp are constants depending on process technology and amplifier architecture.

This model implies that the amplifier’s efficiency Ptx/Pamp is best at maximum output power. Maximum power is, however, not necessarily the common case and therefore such a design is not necessarily the most beneficial one – in cellular systems, for example, amplifiers often do not operate at their maximum output power. While it is not clear how this observation would translate to WSNs, it appears promising especially in dense networks to use amplifiers with different efficiency characteristics
In addition to the amplifier, other circuitry has to be powered up during transmission as well, for example, baseband processors. This power is referred to as PtxElec.

The energy to transmit a packet n-bits long (including all headers) then depends on how long it takes to send the packet, determined by the nominal bit rate R and the coding rate Rcode, and on the total consumed power during transmission. If, in addition, the transceiver has to be turned on before transmission, startup costs also are incurred (mostly to allow voltage-controlled oscillators and phase-locked loops to settle). Equation (2.5) summarizes these effects.

	
	n
	(2.5)

	Etx(n, Rcode, Pamp) = TstartPstart +
	RRcode (PtxElec + Pamp).
	

[image: image8.png]

Modeling energy consumption during reception

Similar to the transmitter, the receiver can be either turned off or turned on. While being turned on, it can either actively receive a packet or can be idle, observing the channel and ready to receive. Evidently, the power consumption while it is turned off is negligible. Even the difference between idling and actually receiving is very small and can, for most purposes, be assumed to be zero.

To elucidate, the energy Ercvd required to receive a packet has a startup component TstartPstart similar to the transmission case when the receiver had been turned off (startup times are considered equal for transmission and receiving here); it also has a component that is proportional to the

	packet time
	n
	. During this time of actual reception, receiver circuitry has to be powered up,

	
	RRcode
	

[image: image9.png]

requiring a (more or less constant) power of PrxElec – for example, to drive the LNA in the RF front end. The last component is the decoding overhead, which is incurred for every bit – this decoding overhead can be substantial depending on the concrete FEC in use; Section 6.2.3 goes into details here. Equation (2.6) summarizes these components.

	
	n
	(2.6)

	Ercvd = TstartPstart +
	RRcode PrxElec + nEdecBit.
	

[image: image10.png]

The decoding energy is relatively complicated to model, as it depends on a number of hardware and system parameters – for example, is decoding done in dedicated hardware (by, for example, a dedicated Viterbi decoder for convolutional codes) or in software on a microcontroller; it also depends on supply voltage, decoding time per bit (which in turn depends on processing speed influenced by techniques like DVS), constraint length K of the used code, and other parameters.

Dynamic scaling of radio power consumption

Applying controller-based Dynamic Voltage Scaling (DVS) principles to radio transceivers as well is tempting, but nontrivial. Scaling down supply voltage or frequency to obtain lower power con-sumption in exchange for higher latency is only applicable to some of the electronic parts of a transceiver, but this would mean that the remainder of the circuitry – the amplifier, for instance, which cannot be scaled down as its radiated and hence its consumed power mostly depends on the communication distance – still has to be run at high power over an extended period of time.

However, the frequency/voltage versus performance trade-off exploited in DVS is not the only possible trade-off to exploit. Any such “parameter versus performance” trade-off that has a convex characteristic should be amenable to an analogous optimization technique.
2.2.5 Relationship between computation and communication

Communication is a considerably more expensive under-taking than computation. Still, energy required for computation cannot be simply ignored; depending on the computational task, it is usually still smaller than the energy for communication, but still noticeable. The core idea is to invest into computation within the network whenever possible to safe on communication costs, leading to the notion of in-network processing and aggregation.

2.2.6 Power consumption of sensor and actuators

Providing any guidelines about the power consumption of the actual sensors and actuators is next to impossible because of the wide diversity of these devices. For some of them – for example, passive light or temperature sensors – the power consumption can perhaps be ignored in comparison to other devices on a wireless node. For others, in particular, active devices like sonar, power consumption can be quite considerable and must even be considered in the dimensioning of power sources on the sensor node, not to overstress batteries.
Network architecture

[image: image11.png]

2.3 Sensor network scenarios

2.3.1 Types of sources and sinks

Section 2.3 has introduced several typical interaction patterns found in WSNs – event detection, periodic measurements, function approximation and edge detection, or tracking – it has also already briefly touched upon the definition of “sources” and “sinks”. A source is any entity in the network that can provide information, that is, typically a sensor node; it could also be an actuator node that provides feedback about an operation.

A sink, on the other hand, is the entity where information is required. There are essentially three options for a sink: it could belong to the sensor network as such and be just another sensor/actuator node or it could be an entity outside this network. For this second case, the sink could be an actual device, for example, a handheld or PDA used to interact with the sensor network; it could also be merely a gateway to another larger network such as the Internet, where the actual request for the information comes from some node “far away” and only indirectly connected to such a sensor network. These main types of sinks are illustrated by Figure 3.1, showing sources and sinks in direct communication.

2.3.2 Single-hop versus multihop networks

From the basics of radio communication and the inherent power limitation of radio communica-tion follows a limitation on the feasible distance between a sender and a receiver. Because of this
[image: image1.png]bbbbbb

"ﬂ Sour::@ﬂ
IR

[image: image12.png]

Figure 2.4
Three types of sinks in a very simple, single-hop sensor network

[image: image13.png]

Sink

Source
Obstacle

Figure 2.5 Multihop networks:
As direct communication is impossible because of distance and/or obstacles, multihop communication can circumvent the problem limited distance, the simple, direct communication between source and sink is not always possible, specifically in WSNs, which are intended to cover a lot of ground (e.g. in environmental or agri-culture applications) or that operate in difficult radio environments with strong attenuation (e.g. in buildings).

To overcome such limited distances, an obvious way out is to use relay stations, with the data packets taking multi hops from the source to the sink. This concept of multihop networks (illustrated in Figure 3.2) is particularly attractive for WSNs as the sensor nodes themselves can act as such relay nodes, foregoing the need for additional equipment. Depending on the particular application, the likelihood of having an intermediate sensor node at the right place can actually be quite high – for example, when a given area has to be uniformly equipped with sensor nodes anyway – but nevertheless, there is not always a guarantee that such multihop routes from source to sink exist, nor that such a route is particularly short.

While multihopping is an evident and working solution to overcome problems with large dis-tances or obstacles, it has also been claimed to improve the energy efficiency of communication. The intuition behind this claim is that, as attenuation of radio signals is at least quadratic in most environments (and usually larger), it consumes less energy to use relays instead of direct commu-nication: When targeting for a constant SNR at all receivers (assuming for simplicity negligible error rates at this SNR), the radiated energy required for direct communication over a distance d is cd α (c some constant, α ≥ 2 the path loss coefficient); using a relay at distance d /2 reduces this energy to 2c(d /2)α .

But this calculation considers only the radiated energy, not the actually consumed energy – in particular, the energy consumed in the intermediate relay node. Even assuming that this relay belongs to the WSN and is willing to cooperate, when computing the total required energy it is necessary to take into account the complete power consumption of Section 2.2.4. It is an easy exercise to show that energy is actually wasted if intermediate relays are used for short distances d . Only for large d does the radiated energy dominate the fixed energy costs consumed in transmitter and receiver electronics – the concrete distance where direct and multihop communication are in balance depends on a lot of device-specific and environment-specific parameters. Nonetheless, this relationship is often not considered. In fact, MIN and CHANDRAKASAN [560] classify the misconception that multihopping saves energy as the number one myth about energy consumption in wireless communication. Great care should be taken when applying multihopping with the end of improved energy efficiency.

It should be pointed out that only multihop networks operating in a store and forward fashion are considered here. In such a network, a node has to correctly receive a packet before it can forward it somewhere.
[image: image2.png]

[image: image14.png]

Figure 2.6 Multiple sources and/or multiple sinks. Note how in the scenario in the lower half, both sinks and active sources are used to forward data to the sinks at the left and right end of the network

2.3.3 Multiple sinks and sources

So far, only networks with a single source and a single sink have been illustrated. In many cases, there are multiple sources and/or multiple sinks present. In the most challenging case, multiple sources should send information to multiple sinks, where either all or some of the information has to reach all or some of the sinks. Figure 3.3 illustrates these combinations.

2.3.4 Three types of mobility

In the scenarios discussed above, all participants were stationary. But one of the main virtues of wireless communication is its ability to support mobile participants. In wireless sensor networks, mobility can appear in three main forms:

Node mobility The wireless sensor nodes themselves can be mobile. The meaning of such mobility is highly application dependent. In examples like environmental control, node mobility should not happen; in livestock surveillance (sensor nodes attached to cattle, for example), it is the common rule.

In the face of node mobility, the network has to reorganize itself frequently enough to be able to function correctly. It is clear that there are trade-offs between the frequency and speed of node movement on the one hand and the energy required to maintain a desired level of functionality in the network on the other hand.

Sink mobility The information sinks can be mobile (Figure 3.4). While this can be a special case of node mobility, the important aspect is the mobility of an information sink that is not part of the sensor network, for example, a human user requested information via a PDA while walking in an intelligent building.

In a simple case, such a requester can interact with the WSN at one point and complete its interactions before moving on. In many cases, consecutive interactions can be treated as
[image: image3.png]E__
)

R
Movement
direction

E}@ of nodes
=

Propagation

Figure 2.7
A mobile sink moves through a sensor network as information is being retrieved on its behalf

separate, unrelated requests. Whether the requester is allowed interactions with any node or only with specific nodes is a design choice for the appropriate protocol layers.

A mobile requester is particularly interesting, however, if the requested data is not locally available but must be retrieved from some remote part of the network. Hence, while the requester would likely communicate only with nodes in its vicinity, it might have moved to some other place. The network, possibly with the assistance of the mobile requester, must make provisions that the requested data actually follows and reaches the requester despite its movements.
Event mobility In applications like event detection and in particular in tracking applications, the cause of the events or the objects to be tracked can be mobile.

In such scenarios, it is (usually) important that the observed event is covered by a sufficient number of sensors at all time. Hence, sensors will wake up around the object, engaged in higher activity to observe the present object, and then go back to sleep. As the event source moves through the network, it is accompanied by an area of activity within the network – this has been called the frisbee model, introduced in reference(which also describes algorithms for handling the “wakeup wavefront”). This notion is described by Figure 2.8, where the task is to detect a moving elephant and to observe it as it moves around. Nodes that do not actively detect anything are intended to switch to lower sleep states unless they are required to convey information from the zone of activity to some remote sink.

Communication protocols for WSNs will have to render appropriate support for these forms of mobility. In particular, event mobility is quite uncommon, compared to previous forms of mobile or wireless networks.
2.4 Optimization goals and figures of merit

For all these scenarios and application types, different forms of networking solutions can be found. The challenging question is how to optimize a network, how to compare these solu-tions, how to decide which approach better supports a given application, and how to turn rel-atively imprecise optimization goals into measurable figures of merit? While a general answer appears impossible considering the large variety of possible applications, a few aspects are fairly evident.

[image: image15.png]=

taml /=

Caml o
I Tam

Figure 2.8 Area of sensor nodes detecting an event – an elephant [378] – that moves through the network along with the event source (dashed line indicate the elephant’s trajectory; shaded ellipse the activity area following or even preceding the elephant)

2.4.1 Quality of service

WSNs differ from other conventional communication networks mainly in the type of service they offer. These networks essentially only move bits from one place to another.
Possibly, additional requirements about the offered Quality of Service (QoS) are made, especially in the context of multimedia applications.
Such QoS can be regarded as a low-level, networking-device-observable attribute – bandwidth, delay, jitter, packet loss rate – or as a high-level, user-observable, so-called subjective attribute like the perceived quality of a voice communication or a video transmission.
While the first kind of attributes is applicable to a certain degree to WSNs as well (bandwidth, for example, is quite unimportant), the second one clearly is not, but is really the more important one to consider! Hence, high-level QoS attributes corresponding to the subjective QoS attributes in conventional networks are required.

But just like in traditional networks, high-level QoS attributes in WSN highly depend on the application. Some generic possibilities are:

Event detection/reporting probability What is the probability that an event that actually occurred is not detected or, more precisely, not reported to an information sink that is interested in such an event? For example, not reporting a fire alarm to a surveillance station would be a severe shortcoming.

Clearly, this probability can depend on/be traded off against the overhead spent in setting up structures in the network that support the reporting of such an event (e.g. routing tables) or against the run-time overhead (e.g. sampling frequencies).

Event classification error If events are not only to be detected but also to be classified, the error in classification must be small.

Event detection delay What is the delay between detecting an event and reporting it to any/all interested sinks?

Missing reports In applications that require periodic reporting, the probability of undelivered reports should be small.

Approximation accuracy For function approximation applications (e.g. approximating the temper-ature as a function of location for a given area), what is the average/maximum absolute or relative error with respect to the actual function?1 Similarly, for edge detection applications, what is the accuracy of edge descriptions; are some missed at all?

Tracking accuracy Tracking applications must not miss an object to be tracked, the reported position should be as close to the real position as possible, and the error should be small. Other aspects of tracking accuracy are, for example, the sensitivity to sensing gaps [923].

2.4.2 Energy efficiency

energy is a precious resource in wireless sensor networks and that energy efficiency should therefore make an evident optimization goal. It is clear that with an arbitrary amount of energy, most of the QoS metrics defined above can be increased almost at will (approximation and tracking accuracy are notable exceptions as they also depend on the density of the network). Hence, putting the delivered QoS and the energy required to do so into perspective should give a first, reasonable understanding of the term energy efficiency.

The term “energy efficiency” is, in fact, rather an umbrella term for many different aspects of a system, which should be carefully distinguished to form actual, measurable figures of merit. The most commonly considered aspects are:

Energy per correctly received bit How much energy, counting all sources of energy consumption at all possible intermediate hops, is spent on average to transport one bit of information (payload) from the source to the destination? This is often a useful metric for periodic monitoring applications.

Energy per reported (unique) event Similarly, what is the average energy spent to report one event? Since the same event is sometimes reported from various sources, it is usual to normalize this metric to only the unique events (redundant information about an already known event does not provide additional information).

Delay/energy trade-offs Some applications have a notion of “urgent” events, which can justify an increased energy investment for a speedy reporting of such events. Here, the trade-off between delay and energy overhead is interesting.

Network lifetime The time for which the network is operational or, put another way, the time during which it is able to fulfill its tasks (starting from a given amount of stored energy). It is not quite clear, however, when this time ends. Possible definitions are:

Time to first node death When does the first node in the network run out of energy or fail and stop operating?

Network half-life When have 50 % of the nodes run out of energy and stopped operating? Any other fixed percentile is applicable as well.

Time to partition When does the first partition of the network in two (or more) disconnected parts occur? This can be as early as the death of the first node (if that was in a pivotal position) or occur very late if the network topology is robust.

Time to loss of coverage Usually, with redundant network deployment and sensors that can observe a region instead of just the very spot where the node is located, each point in the deployment region is observed by multiple sensor nodes. A possible figure of merit is thus the time when for the first time any spot in the deployment region is no longer covered by any node’s observations.

If k redundant observations are necessary (for tracking applications, for example), the corresponding definition of loss of coverage would be the first time any spot in the deployment region is no longer covered by at least k different sensor nodes.

Time to failure of first event notification A network partition can be seen as irrelevant if the unreachable part of the network does not want to report any events in the first place. Hence, a possibly more application-specific interpretation of partition is the inability to deliver an event. This can be due to an event not being noticed because the responsible sensor is dead or because a partition between source and sink has occurred.

It should be noted that simulating network lifetimes can be a difficult statistical problem.

Obviously, the longer these times are, the better does a network perform. More generally, it is also possible to look at the (complementary) distribution of node lifetimes (with what probability does a node survive a given amount of time?) or at the relative survival times of a network (at what time are how many percent of the nodes still operational?). This latter function allows an intuition about many WSN-specific protocols in that they tend to sacrifice long lifetimes in return for an improvement in short lifetimes – they “sharpen the drop” (Figure 3.6).

All these metrics can of course only be evaluated under a clear set of assumptions about the energy consumption characteristics of a given node, about the actual “load” that the network has to deal with (e.g. when and where do events happen), and also about the behavior of the radio channel.

2.4.3 Scalability

The ability to maintain performance characteristics irrespective of the size of the network is referred to as scalability. With WSN potentially consisting of thousands of nodes, scalability is an evidently indispensable requirement. Scalability is ill served by any construct that requires globally consistent state, such as addresses or routing table entries that have to be maintained. Hence, the need to restrict such information is enforced by and goes hand in hand with the resource limitations of sensor nodes, especially with respect to memory.

2.4.4 Robustness

Related to QoS and somewhat also to scalability requirements, wireless sensor networks should also exhibit an appropriate robustness. They should not fail just because a limited number of nodes run out of energy, or because their environment changes and severs existing radio links between two nodes – if possible, these failures have to be compensated for, for example, by finding other routes.

2.5 Design principles for WSNs

Appropriate QoS support, energy efficiency, and scalability are important design and optimization goals for wireless sensor networks. But these goals themselves do not provide many hints on how to structure a network such that they are achieved. A few basic principles have emerged, which can be useful when designing networking protocols;

2.5.1 Distributed organization

Both the scalability and the robustness optimization goal, and to some degree also the other goals, make it imperative to organize the network in a distributed fashion. That means that there should be no centralized entity in charge – such an entity could, for example, control medium access or make routing decisions.

 The disadvantages of such a centralized approach are obvious as it introduces exposed points of failure and is difficult to implement in a radio network, where participants only have a limited communication range. Rather, the WSNs nodes should cooperatively organize the network, using distributed algorithms and protocols. Self-organization is a commonly used term for this principle.

When organizing a network in a distributed fashion, it is necessary to be aware of potential shortcomings of this approach.
In many circumstances, a centralized approach can produce solutions that perform better or require less resources (in particular, energy). To combine the advantages, one possibility is to use centralized principles in a localized fashion by dynamically electing, out of the set of equal nodes, specific nodes that assume the responsibilities of a centralized agent, for example, to organize medium access. Such elections result in a hierarchy, which has to be dynamic: The election process should be repeated continuously lest the resources of the elected nodes be overtaxed, the elected node runs out of energy, and the robustness disadvantages of such – even only localized – hierarchies manifest themselves.

2.5.2 In-network processing

When organizing a network in a distributed fashion, the nodes in the network are not only passing on packets or executing application programs, they are also actively involved in taking decisions about how to operate the network. This is a specific form of information processing that happens in the network, but is limited to information about the network itself. It is possible to extend this concept by also taking the concrete data that is to be transported by the network into account in this information processing, making in-network processing a first-rank design principle.

Aggregation

The simplest in-network processing technique is aggregation. Suppose a sink is interested in obtaining periodic measurements from all sensors, but it is only relevant to check whether the average value has changed, or whether the difference between minimum and maximum value is too big. In such a case, it is evidently not necessary to transport are readings from all sensors to the sink, but rather, it suffices to send the average or the minimum and maximum value.
Transmitting data is considerably more expensive than even complex computation shows the great energy-efficiency benefits of this approach. The name aggregation stems from the fact that in nodes intermediate between sources and sinks, information is aggregated into a condensed form out of information provided by nodes further away from the sink (and potentially, the aggregator’s own readings).

Clearly, the aggregation function to be applied in the intermediate nodes must satisfy some conditions for the result to be meaningful; most importantly, this function should be composable.

Figure 3.7 illustrates the idea of aggregation. In the left half, a number of sensors transmit readings to a sink, using multihop communication. In total, 13 messages are required (the numbers in the figure indicate the number of messages traveling across a given link). When the highlighted nodes perform
aggregation – for example, by computing average values (shown in the right half of the figure) – only 6 messages are necessary.

Challenges in this context include how to determine where to aggregate results from which nodes, how long to wait for such results, and determining the impact of lost packets.

[image: image16.png]

	1
	1

	
	

	1
	
	
	
	1

	
	
	
	
	

	
	3
	
	1
	1

	
	
	
	
	

	
	
	
	
	1

	
	
	
	
	

	6
	
	
	
	1

	
	
	
	
	

	
	
	1
	
	1

	
	
	
	
	

Figure 2.9
Aggregation example

Distributed source coding and distributed compression

Aggregation condenses and sacrifices information about the measured values in order not to have to transmit all bits of data from all sources to the sink. It is possible to reduce the number of transmitted bits (compared to simply transmitting all bits) but still obtain the full information about all sensor readings at the sink.
It is related to the coding and compression problems known from conventional networks, where a lot of effort is invested to encode, for example, a video sequence, to reduce the required bandwidth. The problem here is slightly different, in that we are interested to encode the information provided by several sensors, not just by a single camera; moreover, traditional coding schemes tend to put effort into the encoding, which might be too computationally complex for simple sensor nodes.

If the sensors were connected and could exchange their data, this would be conceivable (using relatively standard compression algorithms), but of course pointless. Hence, some implicit, joint information between two sensors is required. Recall here that these sensors are embedded in a physical environment – it is quite likely that the readings of adjacent sensors are going to be quite similar; they are correlated. Such correlation can indeed be exploited such that not simply the sum of the data must be transmitted but that overhead can be saved here.
Similarly, temporal correlation can be exploited in sensor network protocols.

Distributed and collaborative signal processing

The in-networking processing approaches discussed so far have not really used the ability for processing in the sensor nodes, or have only used this for trivial operations like averaging or finding the maximum. When complex computations on a certain amount of data is to be done, it can still be more energy efficient to compute these functions on the sensor nodes despite their limited processing power, if in return the amount of data that has to be communicated can be reduced.

An example for this concept is the distributed computation of a Fast Fourier Transform (FFT)

Depending on where the input data is located, there are different algorithms available to compute an FFT in a distributed fashion, with different trade-offs between local computation com-plexity and the need for communication. In principle, this is similar to algorithm design for parallel computers. However, here not only the latency of communication but also the energy consumption of communication and computation are relevant parameters to decide between various algorithms.

Such distributed computations are mostly applicable to signal processing type algorithms; typical examples are beamforming and target tracking applications. ZHAO and GUIBAS [924] provide a good overview of this topic.

Mobile code/Agent-based networking

With the possibility of executing programs in the network, other programming paradigms or compu-tational models are feasible. One such model is the idea of mobile code or agent-based networking. The idea is to have a small, compact representation of program code that is small enough to be sent from node to node. This code is then executed locally, for example, collecting measurements,

and then decides where to be sent next. This idea has been used in various environments; a classic example is that of a software agent that is sent out to collect the best possible travel itinerary by hopping from one travel agent’s computer to another and eventually returning to the user who has posted this inquiry.

2.5.3 Adaptive fidelity and accuracy

In the context of a single node, the notion of making the fidelity of computation results contingent upon the amount of energy available for that particular computation. This notion can and should be extended from a single node to an entire network .

As an example, consider a function approximation application. Clearly, when more sensors participate in the approximation, the function is sampled at more points and the approximation is better. But in return for this, more energy has to be invested. Similar examples hold for event detection and tracking applications and in general for WSNs.

Hence, it is up to an application to somehow define the degree of accuracy of the results (assuming that it can live with imprecise, approximated results) and it is the task of the com-munication protocols to try to achieve at least this accuracy as energy efficiently as possible. Moreover, the application should be able to adapt its requirements to the current status of the network – how many nodes have already failed, how much energy could be scavenged from the environment, what are the operational conditions (have critical events happened recently), and so forth. Therefore, the application needs feedback from the network about its status to make such decisions.

2.5.4 Data centricity

Address data, not nodes

In traditional communication networks, the focus of a communication relationship is usually the pair of communicating peers – the sender and the receiver of data. In a wireless sensor network, on the other hand, the interest of an application is not so much in the identity of a particular sensor node, it is much rather in the actual information reported about the physical environment. This is especially the case when a WSN is redundantly deployed such that any given event could be reported by multiple nodes – it is of no concern to the application precisely which of these nodes is providing data. This fact that not the identity of nodes but the data are at the center of attention is called data-centric networking. For an application, this essentially means that an interface is exposed by the network where data, not nodes, is addressed in requests. The set of nodes that is involved in such a data-centric address is implicitly defined by the property that a node can contribute data to such an address.

As an example, consider the elephant-tracking example from Figure 3.5. In a data-centric appli-cation, all the application would have to do is state its desire to be informed about events of a certain type – “presence of elephant” – and the nodes in the network that possess “elephant detec-tors” are implicitly informed about this request. In an identity-centric network, the requesting node would have to find out somehow all nodes that provide this capability and address them explicitly. As another example, it is useful to consider the location of nodes as a property that defines whether a node belongs to a certain group or not. The typical example here is the desire to communicate with all nodes in a given area, say, to retrieve the (average) temperature measured by all nodes in the living room of a given building.

Data-centric networking allows very different networking architectures compared to traditional, identity-centric networks. For one, it is the ultimate justification for some in-network processing techniques like data fusion and aggregation. Data-centric addressing also enables simple expressions of communication relationships – it is no longer necessary to distinguish between one-to-one, one-to-many, many-to-one, or many-to-many relationships as the set of participating nodes is only implicitly defined. In addition to this decoupling of identities, data-centric addressing also supports a decoupling in time as a request to provide data does not have to specify when the answer should happen – a property that is useful for event-detection applications, for example.

Data-centric networking and addressing is also claimed to improve performance and especially energy efficiency of a WSN. One reason is the hope that data-centric solutions scale better by being implementable using purely local information about direct neighbors.
Another reason could be the easier integration of a notion of adaptive accuracy into a data-centric framework as the data as well as its desired accuracy can be explicitly expressed – it is not at all clear how stating accuracy requirements in an identity-centric network could even be formulated, let alone implemented. But this is still an objective of current research.

Implementation options for data-centric networking

There are several possible ways to make this abstract notion of data-centric networks more concrete. Each way implies a certain set of interfaces that would be usable by an application. The three most important ones are briefly sketched here and partially discussed in more detail in later chapters.

Overlay networks and distributed hash tables

There are some evident similarities between well-known peer-to-peer applications like file sharing and WSN: In both cases, the user/requester is interested only in looking up and obtaining data, not in its source; the request for data and its availability can be decoupled in time; both types of networks should scale to large numbers.

In peer-to-peer networking, the solution for an efficient lookup of retrieval of data from an unknown source is usually to form an overlay network, implementing a Distributed Hash Table (DHT) .The desired data can be identified via a given key (a hash) and the DHT will provide one (or possibly several) sources for the data associated with this key. The crucial point is that this data source lookup can be performed efficiently, requiring O (log n) steps where n is the number of nodes, even with only distributed, localized information about where information is stored in the peer-to-peer network.

Publish/Subscribe

The required separation in both time and identity of a sink node asking for information and the act of providing this information is not well matched with the synchronous characteristics of a request/reply protocol. What is rather necessary is a means to express the need for certain data and the delivery of the data, where the data as such is specified and not the involved entities.

This behavior is realized by the publish/subscribe approach [251]: Any node interested in a given kind of data can subscribe to it, and any node can publish data, along with information about its kind as well. Upon a publication, all subscribers to this kind of data are notified of the new data. The elephant example is then easily expressed by sink nodes subscribing to the event “elephant detected”; any node that is detecting an elephant can then, at any later time, publish this event. If a subscriber is no longer interested, it can simply unsubscribe from any kind of event and will no longer be notified of such events. Evidently, subscription and publication can happen at different points in time and the identities of subscribers and publishers do not have to be known to each other.

Implementing this abstract concept of publishing and subscribing to information can be done in various ways. One possibility is to use a central entity where subscriptions and publications are matched to each other, but this is evidently inappropriate for WSNs. A distributed solution is preferable but considerably more complicated.

Also relevant is the expressiveness of the data descriptions (their “names”) used to match pub-lications and subscriptions. A first idea is to use explicit subjects or keywords as names, which have to be defined up front – published data only matches to subscriptions with the same keyword (like in the “elephant detected” example above). This subject-based approach can be extended into hierarchical schemes where subjects are arranged in a tree; a subscription to a given subject then also implies interest in any descendent subjects.
A more general naming scheme allows to formu-late the matching condition between subscriptions and publications as general predicates over the content of the publication and is hence referred to as content-based publish/subscribe approach (see e.g. reference [123] and the references therein for an introduction and overview).

Databases

A somewhat different view on WSN is to consider them as (dynamic) databases .This view matches very well with the idea of using a data-centric organization of the networking

protocols. Being interested in certain aspects of the physical environment that is surveyed by a WSN is equivalent to formulating queries for a database.

To cast the sensor networks into the framework of relational databases, it is useful to regard the sensors as a virtual table to which relational operators can be applied. Then, extracting the average temperature reading from all sensors in a given room can be simply written as shown in Listing 2.1– it should come as no surprise to anybody acquainted with the Standard Query Language (SQL).

Listing 2.1: Example of an SQL-based request for sensor readings [528]

SELECT
AVG (t e m p e r a t u r e)

FROM
sensors

WHERE
l o c a t i o n = " Room
123 "

Such SQL-based querying of a WSN can be extended to an easy-to-grasp interface to wireless sensor networks, being capable of expressing most salient interaction patterns with a WSN.
2.5.5 Exploit location information

Another useful technique is to exploit location information in the communication protocols when-ever such information is present. Since the location of an event is a crucial information for many applications, there have to be mechanisms that determine the location of sensor nodes (and possibly also that of observed events)
 Once such informa-tion is available, it can simplify the design and operation of communication protocols and can improve their energy efficiency considerably.

2.5.6 Exploit activity patterns

Activity patterns in a wireless sensor network tend to be quite different from traditional networks. While it is true that the data rate averaged over a long time can be very small when there is only very rarely an event to report, this can change dramatically when something does happen. Once an event has happened, it can be detected by a larger number of sensors, breaking into a frenzy of activity, causing a well-known event shower effect. Hence, the protocol design should be able to handle such bursts of traffic by being able to switch between modes of quiescence and of high activity.

2.5.7 Exploit heterogeneity

Related to the exploitation of activity patterns is the exploitation of heterogeneity in the network. Sensor nodes can be heterogenous by constructions, that is, some nodes have larger batteries, farther-reaching communication devices, or more processing power. They can also be heterogenous by evolution, that is, all nodes started from an equal state, but because some nodes had to perform

more tasks during the operation of the network, they have depleted their energy resources or other nodes had better opportunities to scavenge energy from the environment (e.g. nodes in shade are at a disadvantage when solar cells are used).

Whether by construction or by evolution, heterogeneity in the network is both a burden and an opportunity. The opportunity is in an asymmetric assignment of tasks, giving nodes with more resources or more capabilities the more demanding tasks. For example, nodes with more mem-ory or faster processors can be better suited for aggregation, nodes with more energy reserves for hierarchical coordination, or nodes with a farther-reaching radio device should invest their energy mostly for long-distance communication, whereas, shorter-distance communication can be under-taken by the other nodes.
Task reas-signment in turn is an activity that requires resources and has to be balanced against the potential benefits.

2.5.8 Component-based protocol stacks and cross-layer optimization

Finally, a consideration about the implementation aspects of communication protocols in WSNs is necessary. Section 2.3.3 has already made the case for a component-based as opposed to a layering-based model of protocol implementation in WSN. What remains to be defined is mainly a default collection of components, not all of which have to be always available at all times on all sensor nodes, but which can form a basic “toolbox” of protocols and algorithms to build upon.

In fact, most of the chapters of Part II are about such building blocks. All wireless sensor net-works will require some – even if only simple – form of physical, MAC and link layer2 protocols; there will be wireless sensor networks that require routing and transport layer functionalities. More-over, “helper modules” like time synchronization, topology control, or localization can be useful. On top of these “basic” components, more abstract functionalities can then be built. As a conse-quence, the set of components that is active on a sensor node can be complex, and will change from application to application.

Protocol components will also interact with each other in essentially two different ways [330]. One is the simple exchange of data packets as they are passed from one component to another as it is processed by different protocols. The other interaction type is the exchange of cross-layer information.

This possibility for cross-layer information exchange holds great promise for protocol opti-mization, but is also not without danger. KAWADIA and KUMAR [412], for example, argue that imprudent use of cross-layer designs can lead to feedback loops, endangering both functionality and performance of the entire system. Clearly, these concerns should not be easily disregarded and care has to be taken to avoid such unexpected feedback loops.

2.6 Service interfaces of WSNs

2.6.1 Structuring application/protocol stack interfaces

Looking at Section 2.3’s discussion of a component-based operating system and protocol stack already enables one possibility to treat an application: It is just another component that can directly interact with other components using whatever interface specification exists between them (e.g. the command/event structure of TinyOS). The application could even consist of several components,

integrated at various places into the protocol stack. This approach has several advantages: It is streamlined with the overall protocol structure, makes it easy to introduce application-specific code into the WSN at various levels, and does not require the definition of an abstract, specific service interface. Moreover, such a tight integration allows the application programmer a very fine-grained control over which protocols (which components) are chosen for a specific task; for example, it is possible to select out of different routing protocols the one best suited for a given application by accessing this component’s services.

But this generality and flexibility is also the potential downside of this approach. The allowing of the application programmer to mess with protocol stacks and operating system internals should not be undertaken carelessly. In traditional networks such as the Internet, the application programmer can access the services of the network via a commonly accepted interface: sockets [791]. This interface makes clear provisions on how to handle connections, how to send and receive packets, and how to inquire about state information of the network.3 This clarity is owing to the evident tasks that this interface serves – the exchange of packets with one (sometimes, several) communication peers.

Therefore, there is the design choice between treating the application as just another component or designing a service interface that makes all components, in their entirety, accessible in a standardized fashion. These two options are outlined by Figure 3.8. A service interface would allow to raise the level of abstraction with which an application can interact with the WSN – instead of having to specify which value to read from which particular sensor, it might be desirable to provide an application with the possibility to express sensing tasks in terms that are close to the semantics of the application. In this sense, such a service interface can hide considerable complexity and is actually conceivable as a “middleware” in its own right.

Clearly, with a tighter integration of the application into the protocol stack, a broader optimiza-tion spectrum is open to the application programmer. On the downside, more experience will be necessary than when using a standardized service interface. The question is therefore on the one hand the price of standardization with respect to the potential loss of performance and on the other hand, the complexity of the service interface.

In fact, the much bigger complexity and variety of communication patterns in wireless sensor networks compared to Internet networks makes a more expressive and potentially complex service interface necessary. To better understand this trade-off, a clearer understanding of expressibility requirements of such an interface is necessary.

Application

Application

 Service interface

	Hardware abstraction
	
	Hardware abstraction

	
	
	

Figure 2.10 Two options for interfacing an application to a protocol stack: As just another component or via a deliberately designed, general service interface

2.7 Expressibility requirements for WSN service interfaces

The most important functionalities that a service interface should expose include:

Support for simple request/response interactions: retrieving a measured value from some sensor or setting a parameter in some node. This is a synchronous interaction pattern in the sense that the result (or possibly the acknowledgment) is expected immediately. In addition, the responses can be required to be provided periodically, supporting periodic measurement-type applications.
Support for asynchronous event notifications: a requesting node can require the network to inform it if a given condition becomes true, for example, if a certain event has happened. This is an asynchronous pattern in the sense that there is no a priori relationship between the time the request is made and the time the information is provided.
This form of asynchronous requests should be accompanied by the possibility to cancel the request for information. It can be further refined by provisions about what should happen after the condition becomes true; a typical example is to request periodic reporting of measured values after an event.

For both types of interactions, the addressees should be definable in several ways. The simplest option is an explicit enumeration of the single or multiple communication peers to whom a (synchronous or asynchronous) request is made – this corresponds to the peer address in a socket communication.
More interesting is the question of how to express data centricity. One option, closely related to the publish/subscribe approach discussed in Section 3.3.4, is the implicit definition of peers by some form of a membership function of an abstract group of nodes. Possible examples for such membership functions include:

Location – all nodes that are in a given region of space belong to a group.
Observed value – all nodes that have observed values matching a given predicate belong to a
group. An example would be to require the measured temperature to be larger than 20◦ C. Along with these groups, the usual set-theoretic operations of intersection, union, or difference between groups should be included in the service interface as well.

Because of this natural need for a service interface semantics that corresponds to the publish/ subscribe concept, this approach is a quite natural, but not the only possible, fit with WSNs.

In-networking processing functionality has to be accessible. For an operation that accesses an entire group of nodes, especially when reading values from this group (either synchronously or asynchronously), it should be possible to specify what kind of in-network processing should be applied to it. In particular, processing that modifies the nature of the result (i.e., data fusion) must be explicitly allowed by the requesting application.
In addition, it can be desirable for an application to be able to infuse its own in-network processing functions into the network. For example, a new aggregation function could be defined or a specific mobile agent has to be written by the application programmer anyway.

In-network processing and application-specific code may also be useful to detect complex events: events that cannot be detected locally, by a single sensor, but for which data has to be exchanged between sensors.

Related to the specification of aggregation functions is the specification of the required accuracy of a result. This can take on the form of specifying bounds on the number of group members that should contribute to a result, or the level of compression that should be applied. Hand in hand with required accuracy goes the acceptable energy expenditure to produce a given piece of information.
Timeliness requirements about the delivery of data is a similar aspect. For example, it may be possible to provide a result quickly but at higher energy costs (e.g. by forcing nodes to wake up earlier than they would wake up anyway) or slowly but at reduced energy costs (e.g. by piggy-backing information on other data packets that have to exchanged anyway).
In general, any trade-offs regarding the energy consumption of any possible exchange of data packets should be made explicit as far as possible.

The need to access location, timing, or network status information (e.g. energy reserves available in the nodes or the current rate of energy scavenging) via the service interface.
It may also be useful to agglomerate location information into higher-level abstractions to be able to talk about objects that correspond to a human view of things, for example, “room 123”. Similarly, facts like the administrative entity a sensor network belongs to can be practically important.

To support the seamless connection of various nodes or entire networks as well as the simple access to services in an “unknown” network, there is a need for an explicit description of the set of available capabilities of the node/the network – for example, which physical parameters can be observed or which entities can be controlled. SGROI et al. argue for a “concept repository” for this purpose.
Security requirements as well as properties have be somehow expressed.
While not a direct part of an actual service interface, additional management functionality, for example, for updating components, can be convenient to be present in the interface as well.
To avoid confusion, it is worthwhile to point out that the design of synchronous or asyn-chronous interface semantics has very little to do with a blocking or nonblocking design of the actual service invocation. It is, for example, easy to implement an asynchronous semantics with blocking invocations as long as the operating system provides threads. These really are separate issues.

2.8 Gateway concepts

2.8.1 The need for gateways

For practical deployment, a sensor network only concerned with itself is insufficient. The network rather has to be able to interact with other information devices, for example, a user equipped with a PDA moving in the coverage area of the network or with a remote user, trying to interact with the sensor network via the Internet (the standard example is to read the temperature sensors in one’s home while traveling and accessing the Internet via a wireless connection). Figure 3.9 shows this networking scenario.

To this end, the WSN first of all has to be able to exchange data with such a mobile device or with some sort of gateway, which provides the physical connection to the Internet. This is relatively straightforward on the physical, MAC, and link layer – either the mobile device/the gateway is

Internet
Remote

users

Gateway

node

Wireless sensor network

Figure 2.10
A wireless sensor network with gateway node, enabling access to remote clients via the Internet

Either option can be advantageous, depending on the application and the typical use case. Possible trade-offs include the percentage of multitechnology sensor nodes that would be required to serve mobile users in com-parison with the overhead and inconvenience to fit WSN transceivers to mobile devices like PDAs.

The design of gateways becomes much more challenging when considering their logical design. One option to ponder is to regard a gateway as a simple router between Internet and sensor network. This would entail the use of Internet protocols within the sensor network.

2.8.2 WSN to Internet communication

Assume that the initiator of a WSN – Internet communication resides in the WSN (Figure 2.10) – for example, a sensor node wants to deliver an alarm message to some Internet host. The first problem to solve is to find the gateway from within the network. Basically, a routing problem to a node that offers a specific service has to be solved, integrating routing and service discovery.
If several such gateways are available, it is necessary to choose in particular, if not all Internet hosts are reachable via each gateway or at least if some gateway should be preferred for a given destination host.

To handle several gateways, each capable of IP networking, and the communication among them, one option is to build an IP overlay network on top of the sensor network.

A sensor does not know to which Internet host to address such a message. Even if the sensor node does not need to be able to process the IP protocol, it has to include sufficient information (IP address and port number, for example) in its own packets; the gateway then has to extract this information and translate it into IP packets. An ensuing question is which source address to use here – the gateway in a sense has to perform tasks similar to that of a Network Address Translation (NAT) device

Alert Alice

Alice’s desktop

Internet

Gateway

nodes

 Alice’s PDA

Figure 2.11 An event notification to “Alice” needs decisions about, among others, gateway choice, mapping “Alice” to a concrete IP address, and translating an intra-WSN event notification message to an Internet application message

2.8.3 Internet to WSN communication

The case of an Internet-based entity trying to access services of a WSN is even more challenging (Figure 3.11). This is fairly simple if this requesting terminal is able to directly communicate with the WSN, for example, a mobile requester equipped with a WSN transceiver, and also has all the necessary protocol components at its disposal. In this case, the requesting terminal can be a direct part of the WSN and no particular treatment is necessary.
Remote requester

	Gateway
	Internet
	Gateway

	
	
	

	
	
	

	nodes
	
	

Figure 2.12 Requesting sensor network information from a remote terminal entails choices about which network to address, which gateway node of a given network, and how and where to adapt application-layer protocol in the Internet to WSN-specific protocols

The more general case is, however, a terminal “far away” requesting the service, not immediately able to communicate with any sensor node and thus requiring the assistance of a gateway node. First of all, again the question of service discovery presents itself – how to find out that there actually is a sensor network in the desired location, and how to find out about the existence of a gateway node?

Once the requesting terminal has obtained this information, how to access the actual services? Clearly, addressing an individual sensor (like addressing a communication peer in a traditional Internet application) both goes against the grain of the sensor network philosophy where an indi-vidual sensor node is irrelevant compared to the data that it provides and is impossible if a sensor node does not even have an IP address.

The requesting terminal can instead send a properly formatted request to this gateway, which acts as an application-level gateway or a proxy for the individual/set of sensor nodes that can answer this request; the gateway translates this request into the proper intrasensor network protocol interactions. This assumes that there is an application-level protocol that a remote requester and gateway can use and that is more suitable for communication over the Internet than the actual sensor network protocols and that is more convenient for the remote terminal to use. The gateway can then mask, for example, a data-centric data exchange within the network behind an identity-centric exchange used in the Internet.

It is by no means clear that such an application-level protocol exists that represents an actual simplification over just extending the actual sensor network protocols to the remote terminal, but there are some indications in this direction.
2.8.4 WSN tunneling

In addition to these scenarios describing actual interactions between a WSN and Internet terminals, the gateways can also act as simple extensions of one WSN to another WSN. The idea is to build a larger, “virtual” WSN out of separate parts, transparently “tunneling” all protocol messages between these two networks and simply using the Internet as a transport network (Figure 2.13). This can be attractive, but care has to be taken not to confuse the virtual link between two gateway nodes with a real link; otherwise, protocols that rely on physical properties of a communication link can get quite confused (e.g. time synchronization or localization protocols).

Internet

	Gateway
	Gateway

	
	

	nodes
	

Figure 2.13
Connecting two WSNs with a tunnel over the Internet
 Fig 2.1 Hardware Components Block Diagram

2
2021 - 2022
 Jeppiaar Institute of Technology

