REGULATION: 2017

EC8452

ELECTRONIC CIRCUITS II

OBJECTIVES:

- To give a comprehensive exposure to all types of amplifiers and oscillators constructed with discrete components. This helps to develop a strong basis for building linear and digital integrated circuits
- To study about feedback amplifiers and oscillators principles
- To design oscillators.
- To study about turned amplifier.
- To understand the analysis and design of LC and RC oscillators, amplifiers, multi vibrators, power amplifiers and DC convertors.

UNIT I - FEEDBACK AMPLIFIERS AND STABILITY

Feedback Concepts – gain with feedback – effect of feedback on gain stability, distortion, bandwidth, input and output impedances; topologies of feedback amplifiers – analysis of series-series, shunt-shunt and shunt-series feedback amplifiers-stability problem-Gain and Phase-margins-Frequency compensation.

UNIT II - OSCILLATORS

Barkhausen criterion for oscillation – phase shift, Wien bridge - Hartley & Colpitt's oscillators – Clapp oscillator-Ring oscillators and crystal oscillators – oscillator amplitude stabilization.

UNIT III - TUNED AMPLIFIERS

Coil losses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers -Analysis of capacitor coupled single tuned amplifier - double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth - Stagger tuned amplifiers - Stability of tuned amplifiers - Neutralization - Hazeltine neutralization method.

UNIT IV WAVE SHAPING AND MULTIVIBRATOR CIRCUITS

Pulse circuits – attenuators – RC integrator and differentiator circuits – diode clampers and clippers –Multivibrators - Schmitt Trigger- UJT Oscillator.

UNIT V POWER AMPLIFIERS AND DC CONVERTERS

Power amplifiers- class A-Class B-Class AB-Class C-Power MOSFET-Temperature Effect- Class AB Power amplifier using MOSFET –DC/DC convertors – Buck, Boost, Buck-Boost analysis and design

TOTAL: 45 PERIODS

OUTCOMES:

After studying this course, the student should be able to:

- Analyze different types of amplifier, oscillator and multivibrator circuits
- Design BJT amplifier and oscillator circuits
- Analyze transistorized amplifier and oscillator circuits
- Design and analyze feedback amplifiers
- Design LC and RC oscillators, tuned amplifiers, wave shaping circuits, multivibrators, power amplifier and DC convertors.

TEXT BOOKS:

1. Sedra and Smith, —Micro Electronic Circuitsl; Sixth Edition, Oxford University Press, 2011. (UNIT I, III, IV, V)

2. Jacob Millman, _Microelectronics ', McGraw Hill, 2nd Edition, Reprinted, 2009. (UNIT I, II, IV, V)

REFERENCES

1. Robert L. Boylestad and Louis Nasheresky, —Electronic Devices and Circuit Theoryl, 10th Edition, Pearson Education / PHI, 2008.

2. David A. Bell, —Electronic Devices and Circuits, Fifth Edition, Oxford University Press, 2008.

3. Millman J. and Taub H., —Pulse Digital and Switching Waveformsl, TMH, 2000.

4. Millman and Halkias. C., Integrated Electronics, TMH, 2007.

JIT-JEPPIAAR/ECE/Mrs.S.Mary Cynthia/IInd Yr/SEM 04/EC8452/ELECTRONIC CIRCUITS II/UNIT 1-5/QB+Keys/Ver3.0

L T P C 3003

9

9

9

9

9

Subject Code: EC8452 Subject Name: ELECTRONIC CIRCUITS II

Year/Semester: II /04 Subject Handler: Mrs.M.Benisha

UNIT I-FEEDBACK AMPLIFIERS AND STABILITY

Feedback Concepts – gain with feedback – effect of feedback on gain stability, distortion, bandwidth, input and output impedances; topologies of feedback amplifiers – analysis of series-series, shunt-shunt and shunt-series feedback amplifiers-stability problem-Gain and Phase-margins-Frequency compensation.

PART * A					
Q.No.	Questions				
1.	Define feedback and its types. BTL1 A portion of the output signal is taken from the output of the amplifier and is combined with the normal input signal. This is known as feedback. There are two types Positive Feedback If the feedback signal is in phase with input signal, then the net effect of the feedback will increase the input signal given to the amplifier. This type of feedback is said to be positive or regenerative feedback. Negative Feedback If the feedback signal is out of phase with the input signal then the input voltage applied to the basic amplifier is decreased and correspondingly the output is decreased. This type of feedback is known as negative or degenerative feedback.				
2	 List the different types of feedback topologies. (Nov 2011) BTL1 Voltage – series feedback topology Voltage – shunt feedback topology Current – series feedback topology Current – shunt feedback topology. 				
3	 What are the effects of negative feedback? (Or) What are the advantages and disadvantages of negative feedback? (Nov 2012, Nov 2016) BTL1 Advantages: It improves the stability of the circuit. It improves the frequency response of the amplifier. It improves the percentage of harmonic distortion. It improves the signal to noise ratio (SNR). It reduces the gain of the circuit. Disadvantages: Reduced circuit overall gain. Reduced stability at high frequency. 				
4	Define positive feedback. BTL1 If the feedback signal is in phase with input signals, then the net effect of the feedback will increase the input signal given to the amplifier. This type of feedback is said to be positive or regenerative feedback.				
5	What is Node and Loop Sampling? BTL1 Node Sampling:				

	When the output voltage is sampled by connecting the feedback network in shunt across the				
	output, the connection is referred to as Voltage or Node Sampling.				
	Loop Sampling:				
	When the output voltage is sampled by connecting the feedback network in series across the				
	output, the connection is referred to as Current or Loop Sampling.				
	Define Frequency compensation and its types. BTL1				
	If the feedback amplifier has more than two poles, it can be unstable. The technique is used to				
	make unstable feedback amplifier to stable is called Frequency compensation				
	There are two types				
6	• Dominant note compensation: In this compensation technique if dominant note is				
U	• Dominant pole compensation. In this compensation teeningue in dominant pole is introduced into the emplifier so that phase shift is less than 1800 when the loop gain is				
	mitoduced into the amplifier so that phase shift is less than -1800 when the loop gain is				
	• Miller compensation: It is implemented by connecting a capacitor between input and				
	output of a gain stages of a multistage amplifier.				
	What is the nature of input and output resistance in negative feedback? BTL1				
	Voltage series feedback:				
	Input impedance: $Z_{11} = Z_{11} * (1+A\beta)$				
	Output impedance: $Zof = Zo / (1+A\beta)$				
	Voltage shunt feedback:				
_	Input impedance: $R_{1}f = R_{1} * (1+A \beta)$				
7	Output impedance: $Zof = Zo * (I + A \beta)$				
	Current series feedback:				
	Input impedance: $Rif = Zi / (1+A \beta)$				
	Output impedance: $Zof = Zo / (1+A \beta)$				
	Current shunt feedback:				
	Input impedance: $\operatorname{Rif} = \operatorname{Ri} / (1 + A \beta)$				
	Output impedance: Rof = Ro * $(1+A\beta)$				
	Mention the three basic networks that are connected around the basic amplifier to				
implement feedback concept. (NOV/DEC'12) BTL2					
8	Mixing Network				
	Sampling Network				
	Feedback Network				
9	What is the purpose of mixer network in feedback amplifier? BTL1				
	The mixer network is used to combine feedback signal and input at input of an amplifier.				
	Define Sensitivity and Desensitivity of gain in feedback amplifiers. (April 2011) BTL1				
	Sensitivity: The fractional change in amplification with feedback divided by the fractional				
	change in amplification without feedback is called the sensitivity of the transfer gain.				
10	Desensitivity: Desensitivity is defined as the reciprocal of sensitivity. It indicates the factor by				
	which the voltage gain has been reduced due to feedback network. Desensitivity factor $D = 1+A$				
	β				
	β . Where A = Amplifier gain and β = Feedback factor.				
	State the Nyquist criterion for stability of feedback amplifiers. BTL1				
	• The amplifier is unstable if the curve encloses the point -1+j0. The system is called as				
11	unstable system.				
	• The amplifier is stable if the curve encloses the point -1+jo. That system is called as				
	stable system				

	Identify the topology for the circuit drawn in Fig. BTL3		
12	$V_{1} = 0$ does not make foodback zero. Eoglaack is fod in shunt with		
	input signal so its Current shunt feedback.		
	The voltage gain of an amplifier without feedback is 60 dB and decreases to 40 dB with		
	feedback. Determine the feedback factor of the feedback network. BTL5 A_{r}		
13	From $A_{vf} = \frac{1}{1 + \beta A_v}$		
	$a = \frac{Av - Avf}{V} = \frac{60 - 40}{V} = 0.22 \times 10^{-3}$		
	$\rho = \frac{1}{A_v A_{vf}} = \frac{1}{60x40} = 8.53x10^{-5}$		
	Cive the empression for goin of on emplifice with feedback, DTL 1		
	Give the expression for gain of an amplifier with feedback. B1L1 $Avf = AV/1 + AV \beta$		
14	Where, Avf – feedback voltage gain. AV – Voltage gain.		
	β - Feedback factor		
	What is loop gain or return ratio? BTL1		
15	A path of a signal from input terminals through basic amplifier, through the feedback network and back to the input terminals forms a loop. The gain of this loop is the product $A \beta$. This gain		
	is known as loop gain or return ratio.		
16	What is the effect of negative feedback on bandwidth? BTL1		
10	Bandwidth of amplifier with feedback is greater than bandwidth of amplifier without feedback.		
	Why gain bandwidth product remains constant with the introduction of negative feedback?		
17	Since bandwidth with negative feedback increases by factor $(1+A \beta)$ and gain decreases by same		
	factor, the gain-bandwidth product of an amplifier does not alter, when negative feedback is		
	introduced.		
	A feedback amplifier has an open loop gain of 600 and feedback factor $\beta = 0.01$. Find the closed loop gain with feedback PTL 1		
18	closed loop gain with feedback. B1L1 $\Delta vf = \Delta V/1 + \Delta V \beta$		
10	= 600/(1+600*0.01)		
	= 85.714.		
	The distortion in an amplifier is found to be 3%, when the feedback ratio of negative		
	teedback amplitier is 0.04. When the feedback is removed, the distortion becomes 15%.		
10	Solution:		
19	Given: $\beta = 0.04$		
	Distortion with feedback = 3% ,		
	Distortion without feedback = 15%		
	$D = 15/3 = 5$: Where $D = 1 + A \beta = 5$		

	Voltage gain of an amplifier without feedback is 60dB. It decreases to 40dB with feedback.
20	Calculate the feedback factor. BTL5
	Solution:
	Given: $Av = 60dB$ and $AvI = 40 dB$.
	We know that,
	$Avf = AV / I + AV\beta$
	$\beta = (AV - Avt) / (AVAvt)$
	= (60-40) / (60*40)
-	$\beta = 0.00833.$
	What is Nyquist diagram? BTL1
21	The plot which shows the relationship between gain and phase-shift as a function of frequency is
-	called as Nyquist diagram.
	Write the steps which are used to identify the method of feedback topology. BTL1
	• Identify topology (type of feedback)
	• To find the type of sampling network.
	• To find the type of mixing network
22	• Find the input circuit.
	• Find the output circuit.
	• Replace each active device by its h-parameter model at low frequency.
	• Find the open loop gain (gain without feedback), A of the amplifier.
	• Indicate Xf and Xo on the circuit and evaluate $\beta = Xf.XO$.
	• Calculate A, and B, find D, Ai, Rif, Rof, and Rof'.
	What are the types of distortions in an amplifier? BTL1
23	• Frequency
	 Noise and non-linear
	What is the effect of lower cut-off frequency & upper cut-off frequency with negative
	feedback? BTL1
	Lower cut off frequency with feedback is less than lower cut off frequency without
24	feedback by factor (1+Amid B)
	Upper cut off frequency with feedback is greater than upper cut off frequency
	without feedback by factor $(1+\text{Amid }\beta)$
25	Define feedback factor or feedback ratio. BTL1
25	The ratio of the feedback voltage to output voltage is known as feedback factor or feedback ratio.
	PART B
	Explain with neat diagram, the two stage voltage series feedback amplifier and determine
	the AV, AVf. (13M) (May 2018) BTL2
	Answer: Page 545 - S.Salivahanan
	FET Common drain Amplifier: - (2M)
	• The feedback signal - voltage Vf across R.
1	• The sampled signal - voltage Vo across R.
	• To find the input circuit, set Vo= 0, and hence Vs appears directly between G and S
	• To find the output circuit set $Ii = 0$ and hence R appears only in the output loop
	Low – frequency model Source Follower (3M)

	f_h = upper cut off frequency without using feedback.	
	After the negative feedback is applied,	(3M)
	$A_{HF} = A_H / (1 - A_H \beta)$	
	A_{mF}	
	$A_{HF} = \frac{m}{f}$	
	$1 - j \frac{f}{fH}$	
	Where,	
	$F_{H} = f_{h} [1 + Amid \beta] = Upper cut off frequency using feedback.$	
	$A_{mf} = Amid / [1 + ALmidB] = Mid band gain with feedback$	
	$F_{\rm m} > f_{\rm s}$ i.e.	
	$\Pi_{\Pi} > \Pi_{\Pi}$ i.e.,	d
	Bandwidth Plot	u. (1M)
	Danuwiuth Flot.	$(1\mathbf{W}\mathbf{I})$
	Gain(dB)>Without	
	feedback	
	0.707 Å	
	With feedback	
	0.707 A mat	
	¹ LF ¹ L ¹ H ¹ HF ↔	
	← Bwf →	
	An amplifier has a mid-band gain of 125 and a bandwidth of 250 KHZ. (a) If 4%	negative
	feedback is introduced, find the new bandwidth and gain. (b) If the bandwidth	is to be
	restricted to 1 MHZ, find the feedback ratio. (8M) BTL5	
	Answer: Page 544 - S. Salivahanan	
	Solution: Given A=125, BW=250KHZ & β =4%=0.04	
	(a) We know that, $BWf = (1+A\beta) BW$	(4M)
_	$= (1+125 \times 0.04) \times 250 \times 103 = 1.5 \text{MHz}$	
3	Gain with feedback, $Af = A / 1 + A\beta$	
	$=125 / 1 + (125 \times 0.04)$	
	Af = 20.83	
	(b) $BWf = (1+A\beta) BW$	(4M)
	$1 * 10^6 = (1+125\beta) * 250 * 10^3$	
	$=(1+125\beta)=1*106/250*10^{3}$	
	$\beta = 3/125 = 0.024$	
	$\beta = 2.4\%$	
	Sketch the block diagram of a feedback amplifier, and derive the expressions for g	gain with
	positive feedback and negative feedback. (9M) (May 2017). BTL3	·
	Answer: Page 532 - S. Salivahanan	
	Introduction:	(2M)
	• The input signal = Xs	× /
4	• The output signal = $X_0 = A X_i$	
	• Feedback signal = $Xf = \beta X_0$	
	• Difference signal – $\mathbf{X} = \mathbf{p} \mathbf{X} 0$	
	• Difference signal = $Au = As - Ai = Ai$	
	• Gain of the amplifier without feedback $A = Xo / X_1$	
	• The feedback factor = $\beta = Xf / Xo$	

	voltage of 0.2volt. On removal of feedback, it needs only 0.1V input to give the same output.				
	Determine a. gain without feedback, b. Gain with feedback, c. Feedback ratio (6M)				
	Answer: Page 538 - S. Salivahanan				
	A=50 B1L5				
	Solution. a Gain without feedback A – output voltage / input voltage – 5 / 0 1	$(2\mathbf{M})$			
	a. Gain without feedback, A= output voltage / input voltage = $5/0.1$ (2N)				
	D. Gain with reedback, Ar = output voltage / input voltage = $5/0.2$ (2)				
	$\frac{1}{2} \frac{1}{2} \frac{1}$	$(2\mathbf{M})$			
	$=25 / 1+25\beta$	(2111)			
	$\beta = 0.02$				
	Determine the voltage gain and input impedance with feedback for a voltage	series			
	feedback having the following parameters: $A = -100$: $R_{\perp} = 10 \ k_{\perp}$: $R_{\perp} = 20 \ k_{\perp}$:	for (i)			
	Recubick having the following parameters, $h = -100$, $h_1 = 10$ km, $h_0 = 20$ km, $R = -0.1$; (ii) $R = -0.5$ (13M) RTI 5				
	p = -0.1, (ii) $p = -0.3$. (13wi) B1L3				
	Answer: Page 552 - S. Salivahanan				
	$A_{vf} = \frac{A_v}{A_v} = \frac{-100}{2} = -9.09$	(2M)			
	$R_{if} = R_i(1 + \beta A_v) = 10x11 = 110 \ k\Omega$	(2M)			
11	$R_{of} = \frac{R_o}{1000} = \frac{20}{1000} = 1.81 k$	(2M)			
	$1+\beta A_v$ 11	~ /			
	$A_{vf} = \frac{A_v}{1+\beta A_v} = \frac{-100}{51} = -1.96$	(2M)			
	$R_{if} = R_i (1 + \beta A_v) = 10x51 = 510 \ k\Omega$	(2M)			
	$R_{of} = \frac{R_o}{1+R_A} = \frac{20}{51} = 0.392 \ k\Omega$	(3M)			
	$\gamma 1+pA_v 51$				
	PART * C				
	Compare all the four feedback amplifiers with neat diagrams. (15M) BTL4				
	Answer: Page 552 - S. Salivahanan				
	Block Diagram:	(8M)			
	$Z_{ic}^{c} \qquad I_{i} \qquad Z_{ic}^{c} \qquad I_{i} \qquad I_{o}^{c} \qquad Z_{i}^{c} \qquad I_{i} \qquad I_{o}^{c} \qquad I_$				
	$ \begin{array}{ c c c c } \hline & & & & & \\ \hline & & & & & \\ \hline & & & & &$				
	V_{i} \downarrow				
	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				
1					
1	(a) (b)				
	$L_{ic} \qquad \qquad L_{oc} \qquad \qquad L_{ic} \qquad \qquad L_{oc} \qquad L_{oc} \qquad \qquad L$				
	$I_{g} \bigoplus \{Z_{s} \}$ I_{d} -network (2) I_{d} -network (2) I_{d} -network (2) I_{d} -network (2)				
	$I_{I_{1}} \qquad I_{o} \leftarrow V_{o} \lessapprox Z_{L}$				
	(1) F-network (2) V (1) F-network (2)				

	$\beta = Vf/Vo = (-Io Re)/Io$			
	= - Re Since the input size of Wi with each face the shall is the We then			
	Since the input signal VI without feedback is the Vs, then $C_{\rm res} = I_0 / V_{\rm res}$			
	$GIII = I0/VI = (-IIIe \cdot ID)/VS$ - hfe/(Ps+hie+ Pe) (A)			
	$D = 1 + \beta * Gm = 1 + (hfe*Re)/(Rs+hie+Re)$			
	D = [P + bie + (1+bfe)] Re] / (Rs + bie + Re)	$(2\mathbf{N}\mathbf{I})$		
	Gmf = Gm / D			
	Gmf = -hfe / [Rs + hie + (1+hfe) Re]			
	$ \begin{array}{l} \text{OIIII} = -\text{IIIE} / [\text{KS} + \text{IIIE} + (1 + \text{IIIE}) \text{KE}] \\ \text{If } (1 \pm \text{hfe}) \ast \text{Ressned} & \text{Rsthie} \text{and} \end{array} $			
	Since hfe $>> 1$: then Gmf ~ -1/Re : Gmf ~ 1/B.			
	Voltage gain	(2M)		
	Avf = (Io*RL) / Vs = Gmf * RL = (-hfe * RL) / [Rs + hie+(1+hfe) * Re]	()		
	Avf \sim - RL / Re; the voltage gain is stable if RL. Re are stable resistors.			
	Ri = Rs + hie + Re.			
	Rif = Ri *D = Rs + hie + (1 + hfe) Re.	(1M)		
	Since $\operatorname{Ro} = \infty$, then $\operatorname{Rof} = \operatorname{Ro}(1+\beta \operatorname{Gm}) = \infty$.	(1M)		
	Hence $R'of = RL \parallel Rof = RL$.			
	An alternative derivation is R'of = R'o $(1+\beta \text{ Gm})/(1+\beta \text{ GM})$			
	Since Gm represents the short circuit Trans conductance, then $Gm = \lim_{R\to 0} GM$			
	From equation (A), GM is independent of RL,			
	And hence $Gm = GM$ and $R'of = R'o = RL$			
	Draw the circuits of voltage shunt and current series feedback amplifiers and derive the expression for input impedance Rif. (10M) (Dec 12) BTL1			
Answer: Page 561 - S. Salivahanan				
	Output voltage directly proportional Input current "Trans resistance amplifier"			
	$A = V_0 / I_1 (or) V_0 = A I_1$			
	$\mathbf{R}_{\mathbf{O}} = \mathbf{V}_{\mathbf{O}} + \mathbf{I}_{\mathbf{O}} + \mathbf{O}_{\mathbf{O}} + \mathbf{I}_{\mathbf{O}} + $	$(2\mathbf{M})$		
	li	(2111)		
	Transresistance			
	Is \land Amplifier(A) $R_{L} > T_{V_{0}}$			
	$Rm = V_o / Ii$			
3				
	$\downarrow If = P V_0$			
	(B)			
	Voltage Gain: (1) $A = M_{\rm eff} + M_{\rm e$			
A = Vo / II = Gain of amplifier without feedback.				
	$\beta = If / Vo$ $Is = Ii + If$ $= Ii + B Vo$			
	$=$ Ii + β A Ii			
	$I = Ii(1 + A \beta)$			
	Af = Vo / Is = Gain of amplifier with feedback.			
	AI = V0/ IS = Gain of amplifier with recuback.			

Assume - source voltage - transferred - output terminals - Vs shorted i.e $Vs = 0$, resulting - current Io into the circuit
Vs = Vi + Vf
$Zof = Zo[1 + A\beta]$
Output impedance - amplifier with feedback- Output impedance - increased by a factor of (1 + A
β).

UNIT II – OSCILLATORS					
Barkhausen criterion for oscillation – phase shift, Wien bridge - Hartley & Colpitt's oscillators –					
Clapp	Clapp oscillator-Ring oscillators and crystal oscillators – oscillator amplitude stabilization.				
	PART * A				
Q.No.	Ouestions				
	Define an Oscillator circuit BTI 1				
1.	An Oscillator is a circuit, which basically act as a Generator generating the output signal which				
	oscillates with a constant amplitude and constant desired frequency				
	Classify Oscillators based on different criterions BTL?				
	Based on waveform generated:				
	• Sinusoidal Oscillator.				
	• Non-Sinusoidal Oscillator or Relaxation Oscillator Example: Square				
	wave, Triangular wave, Rectangular wave etc. According to principle				
2.	involved:				
	• Negative resistance Oscillator,				
	Feedback Oscillator.				
	According to frequency generated:				
	• Audio frequency oscillator - 20Hz – 20KHz				
	 Radio frequency oscillator - 30 KHz – 30 MHz 				
	 Ultrahigh frequency oscillator - 30 MHz – 3GHz 				
	 Microwave Oscillator - 3 GHZ above 				
	Crystal oscillator				
	Name the various types of feedback oscillators. BTL1				
	RC oscillators – Types				
	RC phase shift oscillator				
3.	Wein bridge oscillator				
	LC oscillators – Types				
	Tuned collector oscillator				
	• Tuned emitter oscillator				
	• Tuned collector base oscillator				
	Hartley oscillator Calmitte appillator				
	Colpius oscillator				
4	• Clapp Oscillator. Discuss the conditions to be satisfied for escillation (New 2017) DTL 6				
4.	The total phase shift of an assellaton should be 260 for feedback product of onen loop gain				
	The total phase shift of an oscillator should be 560 ⁻ for feedback, product of open foop gain				
	& feedback factor should be unity. Oscillator should satisfy Barkhausen criterion.				
	Define piezoelectric effect. BTL1				
5.	When applying mechanical energy to some type of crystals called piezoelectric crystals				
	the mechanical energy is converted into electrical energy is called piezoelectric effect.				
	What is Miller crystal oscillator? Explain its operation? BTL1				
	It is nothing but a Hartley oscillator with its feedback Network is replaced by a crystal. Crystal				
6.	normally has higher frequency reactance due to the miller capacitance that are in effect between the				
	transistor terminal				
1					

7.	Define Barkhausen Criteria. (May 2014) (April 2015, April 2017) (Nov 2017) BTL1 1. The total phase shift around a loop, as the signal proceeds from input through amplifier, feedback network back to input again, completing a loop, is precisely 0^0 or 360^0 . 2. The magnitude of the product of the open loop gain of the amplifier (A) and the feedback factor β is unity. i.e., A $\beta = 1$.		
8.	 Name two low frequency and high frequency oscillators. (Nov 2017) BTL1 Low frequency oscillators are RC phase shift oscillator Wein bridge oscillator High frequency oscillators are Hartley oscillator Colpitts oscillator 		
9.	List the advantages of crystal oscillators. BTL1 Frequency stability is greater. Hence, they are used in watches, communication transmitters and receivers.		
10.	 List the advantages of the RC phase shift oscillator. (May 2016, Nov 2017). BTL1 The circuit is simple to design Can produce output over AF range Produces sinusoidal output waveform It is fixed frequency oscillation. 		
11.	Identify which oscillator uses both positive and negative feedback. BTL3 Wein bridge oscillator		
12.	Discuss about the construction of Armstrong oscillator. BTL6 It is a type of <i>LC</i> oscillator. In this oscillator, a transformer is used, whose primary acts as L in the circuit while the voltage across the secondary is used as a feedback.		
13.	List the factorsthat affect the frequencystability of an oscillator.(Nov-2016) BTL1•Change in temperature•Change in load•Change in power supply		
14.	 List the essential parts of an oscillator. BTL1 Tank circuits (or) oscillatory circuit. Amplifier (Transistor amplifier) and Feedback circuit. 		
15	 List the disadvantages of crystal oscillator. BTL1 It is suitable for only low power circuits. Large amplitude of vibrations may crack the crystal. The change in frequency is only possible replacing the crystal with another one by different frequency. 		
16	Compare an oscillator & an amplifier. BTL4		
10	Oscillator Amplifier		

	They are self-generating circuits. The generate waveforms like sine, square and triangular waveforms of their own, without having input signal.	They are not self-generating circuits. They need a signal at the input and they just increase the level of the input waveform.	
	It has infinite gain	It has finite gain.	
	Oscillator uses positive feedback	Amplifier uses negative feedback	
17.	 List the disadvantages of RC phase shift oscillator. (April 2008) BTL1 It is ideal for frequency adjustment over a wide range. It requires a high β transistor to overcome losses in the network. 		
18.	Explain about resonant circuit oscillators. BTL5 LC oscillators are known as resonant circuit oscillator because the frequency of operation of LC oscillator is nothing but a resonant frequency of tank circuit or LC tank circuit which produces sustained, oscillation at resonant circuit oscillator output.		
19.	Justify the need of RC phase shift in a RC phase shift oscillator. BTL5 The amplifier used causes a phase shift of 180 then the feedback network should create phase shift of 180 [°] , to satisfy the Barkhausen criterion. Hence in phase shift oscillators, three sections of RC circuit are connected in cascade, each introducing a shift of 60, thus introducing a total phase shift 180 [°] , due to feedback network, a phase shift of 180 [°] is introducing providing a total phase shift of 360 [°] .		
20.	Wein Bridge oscillator is used for operation at 10 KHz. If the value of resistance R is 100 kΩ, Evaluate the value of C required (Nov 2008). BTL5 F=1/(2πRC) C= 159 155PF		
	Discuss about frequency stability of an assillator (Mar 2000) DTL (
21.	Discuss about frequency stability of an oscillator (May 2009) BTL6 The analysis of the dependence of the oscillating frequency on the various factors like stray		
22.	In a RC phase shift oscillator, if R1 = R2 = R3= 200k and C1=C2=C3=100pf, Estimate the frequency of the oscillator. (April 2010). BTL5 The frequency of oscillator is $F=1/(2\pi RC) = 7.957 kHZ$		
	A crystal has the following parameters $L=0.5$ H, C=0.05pf, and mounting capacitance is 2 pf, Estimate its series and parallel resonating frequencies. (Nov 2010) BTL5		
	Series resonance frequency:		
23.	$f_s = 1/(2\pi\sqrt{LCs})$		
	$= 1/2\pi\sqrt{(0.5*)}$	$0.05 * 10^{-12})$	
	fs = 1 MHz		
	raranei resonance irequency:		
	$f_p = \frac{1}{2\pi} \sqrt{\frac{55 \cdot 6p}{LCsCp}}$		

	Series resonance frequency:	(4M)
	$f_s = 1/(2\pi\sqrt{LCs})$	
	$= 1/2\pi\sqrt{(0.4*0.085*10^{-12})}$	
	<i>fs</i> =863.13 KHz	
	Parallel resonance frequency:	(3M)
	$f_p = \frac{1}{2\pi} \sqrt{\frac{Cs + Cp}{LCsCp}}$	
	$=\frac{1}{2\pi}\sqrt{\frac{0.085*10^{-12}+1*10^{-12}}{0.085*10^{-12}*1*10^{-12}*0.4}}$	
	= 899.07 KHz	
	parallel resonant frequency exceeds the series resonant frequency by 899.07-863.13 K	Hz = 36
	KHZ. Q Factor: $Q = \omega L/R = 0.45$	(3M) (3M)
	Illustrate the working principle of Clapp oscillator with neat diagram (7M) (May20 BTL2)18)
	Answer: Page 590- S. Salivahanan	
	Introduction: • Modified colpitte oscillator circuit - colled clap oscillator	$(2\mathbf{M})$
	 Modified corputs oscillator circuit - carled crap oscillator. The basic tank circuit with two capacitive reactancesone inductive reactance 	(2NI)
	same. Modification -one more capacitor C3 is introduced in series with inductance	ce.
	• C3 much smaller than C1 and C2.	
	Frequency of Oscillation & Condition for Sustained Oscillation: C1	$(2\mathbf{M})$
	$h_{fe} = \overline{C2}$	
2.	$f = \frac{A}{2\pi\sqrt{LC_{eq}}}$	
	Circuit Diagram:	(3M)
	$\mathcal{J}_r = \frac{1}{2\pi\sqrt{LC_3}}$	
	$R_{2} \stackrel{{}{}{}{}{}{}{$	
	Draw the Wein bridge oscillator using BJT, explain and derive the condition for os	cillation.
	(10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or)	lifion
3.	must be at least three for the oscillation to occur (10M) (Nov 12) BTL5	Jiller
	Answer: Page 605- S. Salivahanan	
	Introduction:	(3M)

	• Wein bridge oscillator -audio frequency oscillator.	
	• Involves both positive and negative feedback.	
	• Negative feedback – stability	
	 Dositive feedback - oscillations 	
	 Foodbook rotwork not produce share shift 	
	• Feedback network - not produce - phase shift.	
	• The circuit consists -two transistors- operated - CE configuration.	3 500
	• The transistors- individually -provide - phase shift of 180° - overall phase shift is	360° -
	fed back - first stage - bridge network.	
	Circuit Diagram:	(3M)
	R S Feedback	
	$C \rightarrow 1$	
	$rac{1}{2}$ $rac{1}{2}$ $ ac{1}{2}$	
	The frequency of oscillator is $F=1/(2\pi RC)$	$(2\mathbf{M})$
	Advantages of wein hridge oscillator ·-	(2M)
	1 Good sine wave output	(2171)
	2 Good fraguency stability	
	2. Good Amplitude stability	
	In Colnitte oscillator C1=1uF C2=0.2uF If the frequency of oscillation is 10 KHz fir	nd the
	value of inductor, else find the required gain for sustained oscillation (3M) (Nov 201	7)
	RTI 2	. /)
	DILZ Answer: Page 588- S. Salivahanan	
4.	$\mathbf{F}_{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} = \mathbf{F}_{\mathbf{r}}$	(11)
	Frequency of Oscillation: $J = \frac{1}{2\pi\sqrt{LC_{eq}}}$	$(1\mathbf{N}\mathbf{I})$
	$Ceq = C_1C_2/(C_1+C_2)$	(1M)
	L=0.422mH	(1M)
	Draw Hartley oscillator using FET, explain and derive the condition for oscillation. (1	3M)
	(Nov 2017) BTL4	,
	Answer: Page 582- S. Salivahanan	
	Introduction:	(2M)
	LC Oscillator	
	• Two inductive reactance's - one capacitive reactance - feedback network - Hartley	
	Oscillator.	
5.	Frequency of Oscillation:	(3M)
	1	(===)
	$f = \frac{1}{2\pi \sqrt{L-C}}$	
	$2\pi\sqrt{L_{eq}C}$	
	$L_{eq} = L1 + L2$	
	Circuit Diagram & Explanation (4N)	I+4M)
	180 ⁰ phase shift – feedback network- another 180 ⁰ phase shift – CE amplifier. Tota	1360^{0}
	phase shift.	

	Circuit Diagram:	(3M)
	+Vcc	
	$\langle R_{r}$	
	r_1 r_2 vo	
	$Q^{1} \neq R \neq R \neq R$	
	\dot{s}_{R_2} $R_E \dot{s}_{-C_E}$	
	Barkhausen criterion.	(4M)
	$A\beta = 1$	
	Condition for Oscillation:	
	$f = 1/2\pi RC \sqrt{6}$	
	$A\beta = 1.$	
	Sustained oscillations $\beta = -1/29$	100 5
	In a colpitts oscillator, inductor and capacitor of the tank circuit are H=40mH, C1= C2=500 pE Find the frequency of oscillation (3M) (May 2017) BTI 2	=100pF,
	Answer: Page 589- S. Salivahanan	
0	Frequency of oscillation:	
۶.	$f = \frac{1}{2}$	(1M)
	$\int 2\pi \sqrt{LC_{eq}}$	
	$Ceq = C1^*C2/C1+C2 = 85.55 \text{ pF}$ E = 87.17KHz	$(1\mathbf{M})$
	Discus thoroughly the factors affecting frequency stability of oscillators (6M) BTI	.6
	Answer: Page 613- S. Salivahanan	
	Change in temperature	(6M)
10	• Values of tank circuit components get affected.	
10.	• Parameters of active device get affected.	
	• Variation in power supply	
	Change in atmospheric condition, aging.	
	• Changes in load connected.	
	Stray capacitances	
	PAKT * C	4
	Design a martiev oscillator of frequency 100 KHz, and explain its working with near diagram Assume I $1-I$ $2-AmH$ (15M) (May 2018) BTI 6	at circuit
	Answer: Page 584- S. Salivahanan	
1.	$f = \frac{1}{2}$	(3M)
	$\begin{array}{c} 2\pi\sqrt{cL_{eq}} \\ L_{eq} = 1.1 + 1.2 - 8m H \end{array}$	() M
	$Leq = L1 + L2 = \delta MH$	(3M)
	$100^{+}10^{-}=\frac{1}{2\pi\sqrt{C*8*10^{-3}}}$	

	C=316.6pF (3M)
	Diagram: (6M)
	Using a circuit diagram of a transistorized pierce crystal oscillator, explain its operation.
	(IUM) BIL2
	Answer: Page 609- 5. Salivananan Circuit Diogram:
	Circuit Diagram: (4M)
2.	$R_{2} = C_{E} = C_{E} = C_{1} = C_{1}$
	Resonant frequency of the crystal -change in temp- voltage supply- transistor parameter - no effect on frequency stability. (6M) $f = \frac{1}{1}$
	$2\pi\sqrt{LC_s}$
	Answer: Page 612- S. Saliyahanan
	Introduction: (2M)
	Miller crystal oscillator - modifications -colpitts oscillator- Hartley oscillator.
	Circuit Diagram & Explanation: (4M+4M)
	• Hartley oscillator circuits- two inductors -one capacitor - required - tank circuit.
3.	• One inductor - replaced - crystal, which acts as an inductor - frequencies slightly -greater than - series resonant frequency.
	• The tuned circuit - 'L1' - 'C' - off tuned - behave - inductor i.e. L1.
	• The crystal - behaves - other inductance L2 between base - ground.
	• The internal capacitance - transistor acts - capacitor - to fulfil the elements - tank circuit.
	• The common emitter - provides a phase shift of 180°.
	• Tank circuit - additional phase shift of 180° - satisfy oscillation conditions.
	• Crystal decides - operating frequency - oscillator.

	$+ V_{CC}$ $+ V_{CC}$ $+ V_{CC}$ $+ V_{CC}$ $+ V_{CC}$ $+ V_{CC}$ RFC R_{1} $+ V_{CC}$ R_{1} $+ V_{CC}$
	Oscillator With Crystal Operating Oscillator With Crystal Operating Oscillator With Crystal Operating
0.11	UNIT III – TUNED AMPLIFIERS
Coll I capac tuned ampli	osses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers – Analysis of itor coupled single tuned amplifier – double tuned amplifier - effect of cascading single and double tuned amplifiers on bandwidth – Stagger tuned amplifiers - Stability of tuned fiers – Neutralization - Hazeltine neutralization method.
	PART * A
Q.No.	Ouestions
	What is a tuned amplifier? BTL 1
1.	The amplifier with a circuit that is capable of amplifying a signal over a narrow band of
	frequencies are called tuned amplifiers.
	List the advantages and disadvantages of tuned amplifiers. BTL1
	Advantages:
	Advantages: • They amplify defined frequencies.
	 Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well swited for radio transmitters and receivers.
2	 Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well suited for radio transmitters and receivers. The hand of frequencies over which amplification is required can be varied.
2	 Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well suited for radio transmitters and receivers. The band of frequencies over which amplification is required can be varied.
2	 Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well suited for radio transmitters and receivers. The band of frequencies over which amplification is required can be varied. Disadvantages: Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly.
2	 Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well suited for radio transmitters and receivers. The band of frequencies over which amplification is required can be varied. Disadvantages: Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. If the band of frequency is increased, design becomes complex.
2	 Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well suited for radio transmitters and receivers. The band of frequencies over which amplification is required can be varied. Disadvantages: Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. If the band of frequency is increased, design becomes complex. They are not suitable to amplify audio frequencies.
2	 Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well suited for radio transmitters and receivers. The band of frequencies over which amplification is required can be varied. Disadvantages: Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. If the band of frequency is increased, design becomes complex. They are not suitable to amplify audio frequencies. What are the different coil losses? BTL1
2	 Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well suited for radio transmitters and receivers. The band of frequencies over which amplification is required can be varied. Disadvantages: Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. If the band of frequency is increased, design becomes complex. They are not suitable to amplify audio frequencies. What are the different coil losses? BTL1 Hysteresis loss
2	Advantages: • They amplify defined frequencies. • Signal to Noise ratio at output is good. • They are well suited for radio transmitters and receivers. • The band of frequencies over which amplification is required can be varied. Disadvantages: • Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. • If the band of frequency is increased, design becomes complex. • They are not suitable to amplify audio frequencies. What are the different coil losses? BTL1 • Hysteresis loss • Copper loss
2	Advantages: • They amplify defined frequencies. • Signal to Noise ratio at output is good. • They are well suited for radio transmitters and receivers. • The band of frequencies over which amplification is required can be varied. Disadvantages: • Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. • If the band of frequency is increased, design becomes complex. • They are not suitable to amplify audio frequencies. What are the different coil losses? BTL1 • Hysteresis loss • Copper loss • Current loss
2	Advantages: • They amplify defined frequencies. • Signal to Noise ratio at output is good. • They are well suited for radio transmitters and receivers. • The band of frequencies over which amplification is required can be varied. Disadvantages: • Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. • If the band of frequency is increased, design becomes complex. • They are not suitable to amplify audio frequencies. What are the different coil losses? BTL1 • Hysteresis loss • Copper loss • Current loss What is the classification of tuned amplifiers? BTL1 • Single tuned
2 3 4	Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well suited for radio transmitters and receivers. The band of frequencies over which amplification is required can be varied. Disadvantages: Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. If the band of frequency is increased, design becomes complex. They are not suitable to amplify audio frequencies. What are the different coil losses? BTL1 Hysteresis loss Copper loss Current loss What is the classification of tuned amplifiers? BTL1 Single tuned Double tuned
2 3 4	Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well suited for radio transmitters and receivers. The band of frequencies over which amplification is required can be varied. Disadvantages: Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. If the band of frequency is increased, design becomes complex. They are not suitable to amplify audio frequencies. What are the different coil losses? BTL1 Hysteresis loss Copper loss Current loss What is the classification of tuned amplifiers? BTL1 Single tuned Double tuned Stagger tuned
2 3 4	Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well suited for radio transmitters and receivers. The band of frequencies over which amplification is required can be varied. Disadvantages: Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. If the band of frequency is increased, design becomes complex. They are not suitable to amplify audio frequencies. What are the different coil losses? BTL1 Hysteresis loss Copper loss Current loss What is the classification of tuned amplifiers? BTL1 Single tuned Double tuned Mat are the advantages of tuned amplifiers? BTL1

	• Signal to noise ratio at output is good
	Iney are suited for radio transmitters and receivers What is neutralization? PTL 1
	The effect of collector to base capacitance of the transistor is neutralized by introducing a signal
6	that cancels the signal coupled through collector base capacitance. This process is called
	neutralization.
	What are the advantages of double tuned over single tuned? BTL1
-	• Possess flatter response having steeper sides
1	• Provides larger 3 dB bandwidth
	• Provides large gain-bandwidth product.
	What are the different types of neutralization? BTL1
o	Hazeltine neutralization
o	Rice neutralization
	• Neutrodyne neutralization.
	What is rice neutralization? BTL1
9	It uses centre tapped coil in the base circuit. The signal voltages at the end of tuned base coil are
	equal and out of phase.
	Define Q factor of resonant circuit. BTL1
10	• It is the ratio of reactance to resistance.
10	• It also can be defined as the measure of efficiency with which inductor can store the
	energy. $(-2 - *(M_{evinese}) - E_{evinese})$
	Q=211 (Maximum Energy Stored per cycle / Energy dissipated per cycle)
	The unloaded Ω or ΩU is the ratio of stored energy to dissipated energy in a reactor or resonator
11	The loaded Q of QC is the fund of stored energy to dissipated energy in a reactor of resonator. The loaded Q or QL of a resonator is determined by how tightly the resonator is coupled to its
	terminations.
	What is the response of tuned amplifiers? BTL1
12	The response of tuned amplifier is maximum at resonant frequency and it falls sharply for
	frequencies below and above the resonant frequency.
	What are stagger tuned amplifiers? BTL1
	Stagger tuned amplifiers use a number of single tuned stages in cascade, the successive tuned
12	circuits being tuned to slightly different frequencies. (OR)
13	It is a circuit in which two single tuned cascaded amplifiers having certain bandwidth are taken and their resonant frequencies are adjusted that they are separated by an amount equal to the
	handwidth of each stage. Since resonant frequencies are displaced it is called stagger tuned
	amplifier.
14	What is the effect of cascading single tuned amplifiers on bandwidth? BTL1
14	Bandwidth reduces due to cascading single tuned amplifiers.
	What are the advantages of double tuned amplifier over single tuned amplifier? BTL1
15	• It provides larger 3 dB bandwidth than the single tuned amplifier and hence provides the
15	larger gain-bandwidth product.
	• It provides gain versus frequency curve having steeper sides and flatter top.

	 What is the use of Neutralization? BTL1 BJT and FET are potentially unstable over some frequency range due to the feedback
	parameter presents in them.
16	• If the feedback can be cancelled by an additional feedback signal that is equal in
	amplitude and opposite in sign, the transistor becomes unilateral from input to output the
	oscillations completely stop.
	• This is achieved by Neutralization.
	Mention the applications of class C tuned amplifier. BTL1
17	• Class C amplifiers are used primarily in high-power, high-frequency applications such as
17	Radio-frequency transmitters.
	• In these applications, the high frequency pulses handled by the amplifier are not themselves the signal, but constitute what is called the Carrier for the signal.
	What the advantages are of stagger tuned amplifier? BTI 1
18	The advantage of stagger tuned amplifier is to have better flat, wideband characteristics.
	How single tuned amplifiers are classified? BTL1
19	Capacitance coupled single tuned amplifier.
	• 2. Transformer coupled or inductively coupled single tuned amplifier.
20	What is dissipation factor? BTL1
	It is defined as 1/Q. It can be referred to as the total loss within a component.
	PARI*B
	Demonstrate on single tuned amplifier and derive for gain and resonant frequency. (13M) $(M_{2} \times 2018)$ (Nov 2017) BTI 2
	Answer: Page 497- S. Salivahanan
	Introduction: (2M)
	Single tuned amplifier - consists - CE amplifier - which a tuning circuit - included input (base
	terminal) - output (collector terminal).
	Circuit Diagram: (3M)
	₹ ¹ °°
1.	
	Equivalent circuit: (3M)
	$-g_m R$
	$A_{i} = \frac{GM}{1 + jQ_{i}(\omega/\omega_{o} - \omega_{o}/\omega)} $ (2M)
	1
	$BW = \frac{1}{2\pi RC} $ (3M)
2	Explain the stability of tuned amplifiers using Neutralization techniques. (13M) (May2018)

	A_V A_V Q_1 Q_2 Q_2 Q_2 Freq (Hz)
	Calculate the resonant frequency of a class c tuned amplifier whose Capacitor=10pf and
	inductor L=1mH. (8M) BTL 2
7	Answer: Page 518- S. Salivahanan Solution: The resonant frequency of class-c tuned amplifier is
	$fr = 1 / 2 \pi LC \tag{4M}$
	$fr = 1.59 \text{ MHz} \tag{4M}$
8	 Write a short on coil losses. (8M) BTL1 Answer: Page 503- S. Salivahanan Tuned circuit consists - coil. Practically-coil -not purely inductive. It consists - few losses - represented - leakage resistance - series with the resistor. Losses in Inductor: (1M) Copper loss Eddy-currents loss Copper loss -heat produced by electrical currents - conductors - transformer windings, - other electrical devices. Copper Loss = I²R=Copper Loss = 1/ f Eddy-currents loss Eddy current loss in iron and copper coil -due to currents flowing within the copper or core- cased by induction. Loss- due - heating within - inductors copper - core. Eddy current losses - directly proportional - frequency. Hysteresis loss (2M) If - magnetic field applied - magnetic material - increased -then decreased back - original value, t- magnetic field inside the material does not return - original value.
	hysteresis loss, when a sample - repeatedly magnetized and demagnetized.
	(1M)

UNIT IV- WAVE SHAPING AND MULTIVIBRATOR CIRCUITS

Pulse circuits – attenuators – RC integrator and differentiator circuits – diode clampers and clippers – Multivibrators - Schmitt Trigger- UJT Oscillator. PART * A Q.No. **Ouestions** What is High pass RC circuit? Why it is called high-pass filter? BTL1 • A simple circuit consisting of a series capacitor and a shunt resistor is called high pass RC circuit. 1 • At very high frequencies the capacitor acts as a short circuit and all the higher frequency components appear at the output with less attenuation than the lower frequency components. Hence this circuit is called high-pass circuit. Why high-pass RC circuit is called Differentiator? BTL1 2 High-pass RC circuit gives an output waveform similar to the first derivative of the input waveform. Hence it is called Differentiator. What is Low pass RC circuit? Why it is called low-pass filter? BTL1 • A simple circuit consisting of a series resistor and a shunt capacitor is called Low pass 3 RC circuit. • At very high frequencies the capacitor acts as a virtual short circuit and output falls to zero. Hence this circuit is called low-pass filter Why low-pass RC circuit is called Integrator? BTL1 4 Low pass RC circuit gives an output waveform similar to the time integral of the input waveform. Hence it is called Integrator. What is High pass RL circuit? Why it is called high-pass filter? BTL1 • A simple circuit consisting of a series resistor and a shunt inductor is called high-pass RL 5 circuit. • At very high frequencies, the inductor acts as an open circuit and all the higher frequency components appear at the output. Hence this circuit is called high-pass filter. What is Low pass RL circuit? Why it is called low-pass filter? BTL1 • A simple circuit consisting of a series inductor and a shunt resistor is called low pass RL 6 circuit. • At very high frequencies, the inductor acts as a virtual open circuit and the output falls to zero. Hence this circuit is called low pass filter. What is Delay time (td), Rise time (tr), storage time (ts), fall time (tf) in transistor? BTL1 The time needed for the collector current to rise to 10% of its maximum (saturation) value i.e. iC(Sat) = VCC/RC is called the delay time. The time required for the collector current to rise from 10% to 90% of the maximum value is 7 called rise time (tr). The time when collector current (iC) dropped to 90% of its maximum value is called the storage time. The time required for the collector current to fall from 90% to 10% of its maximum value is called fall time (tf). What is Turn-ON time (ton), Turn-off time (toff) in transistor? BTL1 The sum of the delay time (td) and the rise time (tr) is called the turn-ON time (t_{ON}). 8 $t_{ON} = td + tr$ The sum of the storage time (ts) and the fall time (tf) is called the turn-OFF time (t_{OFF}).

	$(t_{OFF}) = (t_S) + (t_f)$
	List the applications of bistable multivibrator? BTL1
	• It is used as memory elements in shift registers, counters, and so on.
•	• It is used to generate square wayes of symmetrical shape by sending regular triggering
9	pulse to the input. By adjusting the frequency of the trigger pulse, the width of the square
	wave can be altered.
	• It can also be used as a frequency divider.
	What are the two methods of triggering for bistable multivibrators? BTL1
10	Unsymmetrical triggering
	• Symmetrical triggering
11	What are the other names of monostable Multivibrator? BTL1
11	One-shot, Single-shot, a single-cycle, a single swing, a single step Multivibrator, Univibrator.
10	What are the different names of bistable Multivibrator? BTL1
12	Eccles Jordan circuit, trigger circuit, scale-of-2 toggle circuit, flip-flop and binary.
	What is clipper? BTL1
13	The circuit with which the waveform is shaped by removing (or clipping) a portion of the input
	signal without distorting the remaining part of the alternating waveform is called a clipper.
	What are the four categories of clippers? BTL1
	Positive clipper
14	Negative clipper
	Biased clipper
	Combination clipper
	What is comparator? BTL1
15	• The nonlinear circuit which was used to perform the operation of clipping may also be
_	used to perform the operation of comparison is called the comparator.
	• The comparator circuit compares an input signal with a reference voltage.
10	What is clamper? BTL1
16	A circuit which shifts (clamps) a signal to a different dc level, i.e. which introduces a dc level to
	an ac signal is called clamper. It is also called dc restorer.
	which circuits are called multivibrators? B1L1
17	• The electronic circuits which are used to generate no sinusoidal waveforms are called
1/	They are two store switching sizewits in which the output of the first store is fed to the
	• They are two stage switching circuits in which the output of the first stage is fed to the input of the second stage and vice versa.
	Which are the various types of multivibrators? BTL 1
	• Astable multivibrator
18	Bistable multivibrator
	Monostable multivibrator
	What is astable multivibrator? BTL1
	• A multivibrator which generates square wave without any external triggering pulse is
	called astable multivibrator
19	• It has both the states as quasi-stable states. None of the states is stable
	• Due to this, the multivibrator automatically makes the successive transitions from one
	quasi-stable state to other, without any external triggering pulse. So, it called Free-
	running multivibrator.

	• The rate of transition from one quasi-stable state to other is determined by the
	discharging of a capacitive circuit.
	List the applications of Astable multiviorator? B1L1
	• Used as square wave generator, voltage to frequency convertor and in pulse
20	synchronization, as clock for binary logic signals, and so on.
20	• Since it produces square waves, it is a source of production of harmonic frequencies of
	higher order.
	• It is used in the construction of digital voltmeter and SMPS.
	• It can be operated as an oscillator over a wide range of audio and radio frequencies.
	State the basic action of monostable multivibrator. BTL1
	• It has only one stable state. The other state is unstable referred as quasi- stable state.
	• It is also known as one-short multivibrator or univibrator.
21	• After some time, interval, the circuit automatically returns to its stable state.
	• The circuit does not require any external pulse to change from quasi- stable state.
	• The time interval for which the circuit remains in the quasi-stable state is determined by
	the circuit components and can be designed as per the requirement.
	Mention the applications of one short multivibrator? BTL1
	• It is used to function as an adjustable pulse width generator.
22	• It is used to generate uniform width pulses from a variable width pulse train.
22	• It is used to generate clean and sharp pulses from the distorted pulses.
	• It is used as a time delay unit since it produces a transition at a fixed time after the trigger
	signal.
	Which multivibrator would function as a time delay unit? Why? BTL1
23	Monostable multivibrator would function as a time delay unit since it produces a transition at a
	fixed time after the trigger signal.
	What is Bistable multivibrator? BTL1
	• The Bistable multivibrator has two stable states.
24	• The multivibrator can exist indefinitely in either of the two stable states.
	• It requires an external trigger pulse to change from one stable state to another.
	• The circuit remains in one stable state unless an external trigger pulse is applied.
	Why is monostable Multivibrator called gating circuit? BTL1
25	The circuit is used to generate the rectangular waveform and hence can be used to gate other
	Circuits hence called gating circuit.
	What are the main characteristics of Astable Multivibrator? BTL1
26	The Astable Multivibrator automatically makes the successive transitions from one quasi- stable
	State to other without any external triggering pulse.
	What is the self-biased Multivibrator? BTL1
	The need for the negative power supply in fixed bias bistable Multivibrator can be eliminated by
27	raising a common emitter resistance RE. The resistance provides the necessary bias to keep one
	transistor ON and the other OFF in the stable state. Such type of biasing is called self-biasing and
	the circuit is called self-biased bistable Multivibrator.
	What is UTP of the Schmitt Trigger? What is the other name for UTP? BTL1
28	The level of Vi at which Q1 becomes ON and Q2 OFF is called Upper Threshold Point. It is also
	called input turn on threshold level.
29	What is LTP of the Schmitt trigger? BTL1
	The level of Vi at which Q1 becomes OFF and Q2 on is called Lower Threshold Point.

appears.

- Two transistors Q1 Q2 connected back back feedback resistors R1 R2 similar to asable multivibrator no capacitors.
- Two transistor base biased with –VBB.
- RC1 and RC2 acts load resistor.
- Two trigger pulses(+ve) applied change the states from 1 state another in base of transistor
- R_E used emitter circuit provide bias keep one transistor ON and another OFF.

	Circuit Diagram:	(7M)
	If a positive pulse - applied at S or R, drives Q_1 - saturation - Q_2 goes - cut-off.	
	Explain Clipper circuits. (10M) BTL2 Answer: Page 648- S. Salivahanan	
8	 Cupper: A circuit - removes the peak of a waveform - <i>clipper</i>. Clipper- device - to prevent the output - circuit - exceeding - predetermined voltag distorting - remaining part - applied waveform. The basic components - ideal diode - resistor. To fix - clipping level - the desired amount, a dc battery - included. Types: Depending - features - diode, the positive or negative region of the input signal is "clippe and accordingly the diode clippers may be , Positive clippers. Negative clippers. Series clippers Parallel (or shunt) clippers. The series configuration is defined - diode - series - load, Shunt clipper - diode - branch parallel to the load. Positive & Negative Clipper: 	(2M) ;e level - (2M) d" off (4M)

UNIT V–POWER AMPLIFIERS AND DC CONVERTERS		
Power amplifiers- class A-Class B-Class AB-Class C-Power MOSFET-Temperature Effect- Class AB		
Power	amplifier using MOSFET –DC/DC convertors – Buck, Boost, Buck-Boost analysis and design	
	PART * A	
Q.No.	Questions	
	State the difference between voltage and power amplifier. BTL1	
	Voltage Amplifier: The input given to the transistor is in millivolts. The transistor used is a small	
1.	signal transistor.	
	Power Amplifier: The input given to the transistor is in volts. The transistor used is a power	
	transistor	
	Why nower amplifier is also known as large signal amplifier? BTI 1	
2	Since the output obtained from the power amplifier is very large it is known as large signal	
_	amplifier.	
	Define class A power amplifier. How do you bias class A amplifier? BTL1	
2	It is an amplifier in which the input signal and the biasing is such that the output current flows for	
3	full cycle of the input signal. The Q point should be kept at the center of the DC load line to bias the	
	Class A amplifier.	
	Define class B power amplifier. BTL1	
4	It is an amplifier in which the input signal and the biasing is such that the output current flows for	
	half cycle of the input signal.	
5	Define class C power amplifier. BTL1	
5	It is an amplifier in which the input signal and the blasing is such that the output current flows for	
	Define class AB nower amplifier BTI 1	
6	It is an amplifier in which the input signal and the biasing is such that the output current flows for	
-	more than half cycle but less than full cycle of the input signal	
	What is a push pull amplifier? BTL1	
7	Class B amplifier is used as a push pull amplifier which uses two transistors. Both the transistors	
	work as a push pull arrangement. i.e one transistor will be on at a time.	
	What is cross over distortion? How it can be eliminated? BTL1	
8	There is a 0.7V delay in between every half cycle. Due to this the sine wave will not be a continues	
	wave. This is called cross over distortion. It can be eliminated by class AB amplifier.	
	An amplifier has an efficiency of 32% and a collector dissipation of 0.8W. Calculate the d.c.	
	power input and a.c. power output of the circuit. B1L1 Pin(d, a) = 2Pa(d, a) + Pa(a, a)	
9	FIII(d.c) = 2FC(d.c) + FO(d.c)	
	= 2.35 W	
	Po(a.c) = Pin(d.c)(.32)	
	0.752W	
10	Define DC DC Converters. BTL1	
10	DC-to-DC converters convert electrical power provided from a source at a certain voltage to	
	List the features of DC DC Conventors, PTL 1	
	DC to DC nower converters form a subset of electrical newer converters	
11	 DC-10-DC power converters form a subset of electrical power converters. Both the output and input power specifications of do to do converters are in do. Most do 	
	- Dom the output and input power specifications of dc-to-dc converters are in dc. Wost dc loads require a well-stabilized dc voltage capable of supplying a range of required current, or	
10	DC-to-DC converters convert electrical power provided from a source at a certain voltage to electrical power at a different dc voltage.	
11	• DC-to-DC power converters form a subset of electrical power converters.	
	• Both the output and input power specifications of dc-to-dc converters are in dc. Most dc	
	ioads require a wen-stabilized do voltage capable of supplying a range of required current, or	

	a variable dc current or pulsating dc current rich in harmonics.
	• The dc-to-dc converter has to provide a stable dc voltage with low output impedance over a
	wide frequency range.
	Draw the simple DC DC Converter. BTL1
12	\mathbf{v} \mathbf{v} \mathbf{v}
	$r_{g} \sim r_{c} \neq R \leq r_{c}$
	• • • • • • • • • • • • • • • • • • • •
	List the different types of simple DC DC Converters. BTL1
13	Series controlled
13	Shunt Controlled
	Switch Mode Converters
	What are the different modes of DC Converters in Switch mode? BTL1
1/	Buck Converter
14	Boost Converter
	Buck-Boost Converter
	Give the important features of Buck Converters. BTL1
	• Gain less than unity
	• Gain is independent of switching frequency as long as Ts <to< td=""></to<>
15	• Output voltage ripple percentage of independent of the load on the converter
	• Output ripple have second order roll off with the switching frequency.
	• Ideal efficiency is unity.
	The input current is discontinuous and pulsating.
	Write the important features of Boost Converters. BTL1
	• Gain more than unity
	 Gain is independent of switching frequency as long as Ts<rc< li=""> </rc<>
16	• Output voltage ripple percentage of dependent of the load on the converter
	Parasitic resistance degrades the gain
	• Ideal efficiency is unity.
	The input current is continuous.
	List the important features of Buck-Boost Converters. BTL1
	• Gain can be set below or above unity.
	• Gain is independent of switching frequency as long as Ts <rc< td=""></rc<>
17	• Output voltage ripple percentage of independent of the load on the converter &
	Output ripple have second order roll off with the switching frequency.
	• Parasitic resistance degrades the gain
	• Ideal efficiency is unity.
	• The input current is discontinuous and pulsating.
18	vvnat is theoretical maximum conversion efficiency of class A power amplifier? (Nov 2009)
10	25% and it can be increased to 50% by using inductors or transformers
	What is 'distortion' in nower amplifiers? (Nov 2000) RTI 1
19	It is non-linear or harmonic distortion and is caused by the non-linear characteristic curve
	of an active devices

	A BJT has a maximum pow	er dissipation of 2W at ambi	ent temperature of 25°C and					
20	maximum junction temperature of 150°C, find its thermal resistance. (Nov 2010) BTL1 Thermal resistance (TL TA) (PD							
20	$= (150 \ 25)/2$							
	= (150-25)/2 = 62.5 °C/W							
	List the disadvantages of push pull amplifier. (Nov 2011) BTL1							
21	• The circuit needs two sepa	arate voltage suppliers						
	• The ouput is distorted due	e o the crss over distortion						
	Define Harmonic distortion and intermodulation distortion. (Nov 2011) BTL1							
	Harmonic distortion is caused by the nonlinear dynamic characteristics curve of an active							
22	device. Here new frequencies are produced in the output which are not present in the input.							
	Intermodulation distortion is also a nonlinear distortion which occurs when the input signal consists							
	of more than one frequency	a contact of norman amplificar? D	Ψ 1.					
23	The resistance offered	by the bipolar junction transist	or to the flow of heat is called					
-0	thermal resistance The thermal resistance measured in $^{\circ}C/W - (TI - TA)/PD$							
	What is meant by second order	harmonic distortion? (Nov 2012	2) BTL1					
24	The second harmonic distortion is defined as B2 / B1 X100 % Where B1-amplitude of the							
	desired signal the fundamental free	equency ω B2- amplitude of the se	cond harmonic frequency 2ω					
	List the applications of MOSFE	ET power amplifier. (Nov 2012)	BTL1					
25	• Large switches							
	• Line drivers for digital sw	itching circuits						
	Switched mode voltage re	gulators						
	Distinguish between class A and	i class B operation. (April 2011)	BIL2					
26	Parameter	Class A	Class B					
	Conduction angle	100 % of the input signal	50 % of the input signal					
	Theoretical efficiency	25%	78.5%					
		PART *B						
	In fig. a basic Class C-amplifier is shown. It uses supply voltage of + 20V and load resistance							
	of 10022. The operating frequency is 3MHZ and VCE(sat) = 0.3 V. Calculate and efficiency. If							
	Answer: Page 484. S. Saliyahanan							
	Answer: Page 484- S. Salivahanan	e conduction angle also. (1510)	3TL2					
	Answer: Page 484- S. Salivahanan	e conduction angle also. (15M)	3TL2					
	Answer: Page 484- S. Salivahanan +20V(V _{cc})	e conduction angle also. (15M)	3TL2					
	Answer: Page 484- S. Salivahanan		3TL2					
	Answer: Page 484- S. Salivahanan +20V(V _{cc}) 100pf - 3μH		3TL2					
1	Answer: Page 484- S. Salivahanan +20V(V _{cc})		3TL2					
1	Answer: Page 484- S. Salivahanan +20V(V _{cc})		3TL2					
1	Answer: Page 484- S. Salivahanan +20V(V _{cc}) 100pf 3μH		3TL2					
1	peak current is 500 mA, mid th Answer: Page 484- S. Salivahanan +20V(V _{cc}) 100pf $3µHv_i 100ρf 100Ω$		3TL2					
1	peak current is 500 mA, mid the Answer: Page 484- S. Salivahanan +20V(V _{cc}) 100pf - 3µH $v_i - 100Ω$		3TL2					
1	peak current is 500 mA, mid the Answer: Page 484- S. Salivahanan +20V(V _{cc}) 100pf $3µHv_i 100ΩSolution:$		3TL2					
1	peak current is 500 mA, mid th Answer: Page 484- S. Salivahanan + $20V(V_{cc})$ 100pf 3μ H v_{i} 100Ω Solution:		3TL2					

2

$V_{p} = V_{CC} - V_{CE(sat)} = 20 - 0.3$ Or, $V_{p} = 19.7V$ $P_{0} = \frac{V_{p}^{2}}{2R_{L}} = \frac{1.97^{2}}{2 \times 100}$ or, $P_{0} = 1.69W$	(2M)
$P_{dc} = 20 \times 0.0857$ or, $P_{dc} = 1.714 W$ $P_{dc} = V_{cc} \times I_{dc}$ Where,	(2M)
$I_{dc} = \frac{P_0}{V_p} = \frac{1.69W}{19.7V} = 0.0857A$ $\eta = \frac{P_0}{P_{dc}} = \frac{1.69W}{1.714W} \times 100 = 98.5\%$	(2M)
For the frequency of 3MHz, the period of the wave, T, is $T = \frac{1}{3 \times 10^6} = 0.33 \mu s$ $t = \frac{P_0 \times T}{I_0 - V_0}$	(2M)
$I_{p} \times V_{p}$ $= \frac{1.69 W \times 0.33 \times 10^{-6}}{500 \times 10^{-3} \times 19.7 V}$ or, $t = 56.6 \times 10^{-9} s$ or, $t = 56.6 ns$ And the conduction angle θ is	
$\theta = \frac{t}{T} \times 360 = \frac{56.6 \times 10^{-9}}{0.33 \times 10^{-6}} \times 360$ or, $\theta = 61.7^{\bullet}$	(5M)
Calculate maximum ac output power and the minimum power rating of the transister push-pull amplifier shown in fig.(10M) BTL2 Answer: Page 682- S. Salivahanan	ors in the

	Buck	Boost	Buck-Boost	
Ideal Gain	d	$\frac{1}{1-d}$	$-\frac{d}{1-d}$	
Current Ripple	$\frac{(1-d)RT_S}{L}$	$\frac{d(1-d)^2 RT_S}{L}$	$\frac{(1-d)^2 R T_S}{L}$	
Voltage Ripple	$\frac{(1-d)T_S^2}{8LC}$	$\frac{dT_S}{RC}$	$\frac{dT_S}{RC}$	
Duty Ratio	$\frac{2}{3} \leq d \leq 1$	$0 \le d \le \frac{2}{3}$	$0 \le d \le \frac{2}{3}$	
Efficiency degradation on account of different non-idealities Note: $\alpha = \frac{R_l}{R}$; $\beta = \frac{R_g}{R}$;				
R_l and R_g	$\frac{1}{1+\alpha+\beta d}$	$\frac{1}{1 + \frac{\alpha + \beta}{(1 - d)^2}}$	$\frac{1}{1 + \frac{\alpha + \beta d}{(1 - d)^2}}$	
V_{sn} and V_{sf}	$1 - \frac{V_{sf}}{V_g} - \frac{V_{sf}}{dV_g}$	$1 - \frac{V_{sn}}{V_g} - \frac{(1-d)V_{sf}}{V_g}$	$1 - \frac{V_{sn}}{V_g} - \frac{(1-d)V_{sf}}{dV_g}$	

Wave form Comparison:

(3M)

	$\delta V_o = \frac{\delta Q}{G} = \frac{1}{G} \frac{1}{2} \frac{\delta I_o}{2} \frac{T_S}{2}$	
	$C = C + 2 + 2 + 2$ $V (1 - d)T^{2}$	
	$\delta V_o = \frac{V_o (1-a) T_S}{8LC}$	
	$\frac{\delta V_o}{V_o} = \delta_v = \frac{(1-d)T_S^2}{8LC}$	
	Input Current:	
	$I_g = dI_o$	
	Validity of Results:	
	$\frac{\delta V_o}{\delta V_o} = \delta = \frac{5(1-d)T_S^2}{\delta V_o} < 1$	
	$V_o = \sigma_v = T_o^2$	
	Efficiency:	
	$\eta = \left\lfloor 1 - \frac{V_{sn}}{V_g} - \frac{V_{sf}(1-d)}{dV_g} \right\rfloor \left\lfloor \frac{R}{R + R_l + dR_g} \right\rfloor$	
	Features:	(2M)
	 Gain less than unity Gain is independent of switching frequency of long of TakTa 	
	 Output voltage ripple percentage of independent of the load on the convertence 	erter
	• Output ripple have second order roll off with the switching frequency.	
	• Ideal efficiency is unity.	
	• The input current is discontinuous and pulsating. Explain the operation of Boost Converter with past sketch. (10M) BTL 2	
	Answer: Page 119- Notes	
	Diagram:	(2M)
	Boost Converter	
	$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$	
	Wayaform	$(2\mathbf{M})$
		(2111)
6		
	^{1}L $(1-d)T_{S}$ t	
	*o t	
	Steady State Waveforms of the Boost Converter	

2-57

	Answer: Page 671- S. Salivahanan	
	Introduction:	(2M)
	Circuit Diagram:	(2M)
	$R_{1} \neq R_{2}$ $R_{2} \neq R_{E}$ $R_{2} \neq R_{E}$	
	Operation ; N1, N2 = the number of turns in the primary and secondary	(2M)
	V1, V2 = the primary and secondary voltages I1, I2 = the primary and secondary currents Z1, Z2 = the primary and seconadary impedance (Z2 = RL) Ptot = P1 + P2 + PC + PT + PE $\eta_{(max)} = \frac{P_{ac}}{P_{dc}} = \frac{2V_{CC} 2I_C}{8V_{CC} 1_C} \times 100\%$	(2M)
	Draw the circuit diagram of class B push pull amplifier and discuss its merits. (NOV/DEC 2011) (APR/MAY 2010)(NOV/DEC'12) BTL2 Answer: Page 478- S. Saliyahanan	(13M)
	Introduction:	(2M)
10	 Push-pull - one transistor conducts - half a cycle - other -off, and vice versa. On - positive half cycle - input voltage, the secondary winding of T1 has voltage v1 and v2, as shown. The upper transistor conducts - lower one cuts off. The collector current through Q1flows - upper half of the output primary winding. This produces - amplified - inverted voltage, - transformer-coupled - loud speaker. On - next half cycle - input voltage, - polarities reverselower transistor turns on - upper transistor turns off - lower transistor amplifies - signal, - alternate half cycle appears across the loudspeaker. Since each transistor amplifies one-half of the input cycle, the loud speaker receives - complete cycle - amplified signal. 	
	Circuit Diagram:	(4M)

2-65

emitter junction over comes cross – over distortion in push – pull amplifier. For analysis purposes, - sufficient - consider only half of the circuit for reasons of symmetry, and VCC of half (= VCC/2 = 30/2 = 15V) is to be taken for one transistor. (2M) The current through resistors R1 and R2 is, $I = \frac{15V}{R_1 + R_2} = \frac{15V}{300\,\Omega + R_2}$(A) (2M) IXR₂ = 0.7V (desired voltage) $or, I = 0.7 V / R_2$ (B) (1M) $\frac{0.7V}{R_2} = \frac{15V}{300\Omega + R_2}$ or, $R_2 = 14.7 \Omega$ (1M)