
CS8484-SOFTWARE ENGINEERING Department of CSE

1

2020-2021 Jeppiaar Institute of Technology

 UNIT II

 REQUIREMENTS ANALYSIS AND SPECIFICATION

Software Requirements: Functional and Non-Functional, User requirements, System

requirements, Software Requirements Document – Requirement Engineering Process:

Feasibility Studies, Requirements elicitation and analysis, requirements validation,

requirements management -Classical analysis: Structured system Analysis, Petri Nets- Data

Dictionary.

2.1 SOFTWARE REQUIREMENTS

 The process of establishing the services that the customer requires from a system and the

constraints under which it operates and is developed

 Requirements may be functional or non-functional

 Functional requirements describe system services or functions

 Non-functional requirements is a constraint on the system or on the development process.

Types of requirements

 User requirements

• Statements in natural language (NL) plus diagrams of the services the system provides and its

operational constraints. Written for customers

 System requirements

• A structured document setting out detailed descriptions of the system services. Written as a

contract between client and contractor

 Software specification

• A detailed software description which can serve as a basis for a design or implementation. Written

for developers

2.1.1 FUNCTIONAL AND NON-FUNCTIONAL COMPONENTS:

a) Functional requirements:

 Functionality or services that the system is expected to provide.

 Functional requirements may also explicitly state what the system shouldn‘t do.

 Functional requirements specification should be:

 Complete: All services required by the user should be defined

 Consistent: should not have contradictory definition (also avoid ambiguity don‘t leave

room for different interpretations)

b) Examples:

 The LIBSYS system

 A library system that provides a single interface to a number of databases of articles in different

libraries.

 Users can search for, download and print these articles for personal study.

CS8484-SOFTWARE ENGINEERING Department of CSE

2

2020-2021 Jeppiaar Institute of Technology

c) The user shall be able to search either all of the initial set of databases or select a subset from

it.

d) The system shall provide appropriate viewers for the user to read documents in the document

store.

e) Every order shall be allocated a unique identifier (ORDER_ID) which the user shall be able to

copy to the account‘s permanent storage area.

f) Non-Functional requirements:

 Requirements that are not directly concerned with the specific functions delivered by the system

 Typically relate to the system as a whole rather than the individual system features

 Often could be deciding factor on the survival of the system (e.g. reliability, cost, response time)

g) Non-Functional requirements classifications:

Figure 2.1 Non Functional Requirement Classification

We can see from this diagram that the non-functional requirements may come from

required characteristics of the software (product requirements), the organization developing the

software (organizational requirements) or from external sources.

The types of non-functional requirements are:

h) Product requirements

 Specify the desired characteristics that a system or subsystem must possess.

 Most NFRs are concerned with specifying constraints on the behavior of the executing system.

CS8484-SOFTWARE ENGINEERING Department of CSE

3

2020-2021 Jeppiaar Institute of Technology

o Performance

o Capacity

 Others are more difficult to quantify and, consequently, are often stated informally

o Usability

i) Organisational requirements

 Process requirements are constraints placed upon the development process of the system

 Process requirements include:

o Performance

o Capacity

 Others are more difficult to quantify and, consequently, are often stated informally

o Usability

j) Organisational requirements

 Process requirements are constraints placed upon the development process of the system

 Process requirements include:

o Requirements on development standards and methods which must be followed

o CASE tools which should be used

o The management reports which must be provided

k) Examples of process requirements

 The development process to be used must be explicitly defined and must be conformant with ISO

9000 standards

 The system must be developed using the XYZ suite of CASE tools

 Management reports setting out the effort expended on each identified system component must be

produced every two weeks

 A disaster recovery plan for the system development must be specified

i) External requirements

 May be placed on both the product and the process

 Derived from the environment in which the system is developed

 External requirements are based on:

o Application domain information

 Organizational considerations.

 The need for the system to work with other systems

 Health and safety or data protection regulations

 Or even basic natural laws such as the laws of physics.

j) Examples of external requirements

 Medical data system: The organization’s data protection officer must certify that all data is

maintained according to data protection legislation before the system is put into operation.

 Train protection system: The time required to bring the train to a complete halt is computed using

the following function:

 The deceleration of the train shall be taken as:

CS8484-SOFTWARE ENGINEERING Department of CSE

4

2020-2021 Jeppiaar Institute of Technology

2.1.2 USER REQUIREMENT:

 The user requirement(s) document (URD) or user requirement(s) specification is a document

usually used in software engineering that specifies the requirements the user expects

 from software to be constructed in a software project.

 Once the required information is completely gathered it is documented in a URD, which is meant

to spell out exactly what the software must do and becomes part of the contractual agreement.

 A customer cannot demand features not in the URD, whilst the developer cannot claim the product

is ready if it does not meet an item of the URD.

 The URD can be used as a guide to planning cost, timetables, milestones, testing, etc. The explicit

nature of the URD allows customers to show it to various stakeholders to make sure all necessary

features are described.

 Formulating a URD requires negotiation to determine what is technically and economically

feasible.

 Preparing a URD is one of those skills that lies between a science and an art, requiring both

software technical skills and interpersonal skills.

 Often a URD includes priority ranking for each requirement. A typical system might be as follows:

 M Mandatory requirement. This feature must be built into the final system.

 D Desirable requirement. This feature should be built into the final system unless the cost is too

high.

 Optional requirement.

 E Possible future enhancement.

2.1.3 SYSTEM REQUIREMENTS

Purpose of SRS

 Official statement of what is required by the system developer.

 It should include user requirements and specification of system requirements

 It should describe what the system should do.

Ways of writing an SRS:

1. Natural Language

2. Structured Natural Language

3. Design Description Language

4. Graphical Notations

5. Mathematical specification

Guidelines for Writing SRS:

1. Use standard formats

2. Use “shall” for mandatory requirements and “should” for desirable requirements.

3. Use text highlighting to identify key parts of requirements.

4. Include rationale of why a requirements is necessary

 To be used efficiently, all computer software needs certain hardware components or other software

resources to be present on a computer.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Contractual_agreement
http://en.wikipedia.org/wiki/Contractual_agreement
http://en.wikipedia.org/wiki/Stakeholder_(corporate)
http://en.wikipedia.org/wiki/Negotiation
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Art
http://en.wikipedia.org/wiki/Interpersonal_skills
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer

CS8484-SOFTWARE ENGINEERING Department of CSE

5

2020-2021 Jeppiaar Institute of Technology

 Most software defines two sets of system requirements: minimum and recommended.

 With increasing demand for higher processing power and resources in newer versions of software,

system requirements tend to increase over time. Industry analysts suggest that this trend plays a

bigger part in driving upgrades to existing computer systems than technological advancements.

 A second meaning of the term of System requirements is a generalization of this first definition,

giving the requirements to be met in the design of a system or sub-system.

 Typically an organization starts with a set of Business requirements and then derives the System

requirements from there.

2.2 SOFTWARE REQUIREMENT DOCUMENT

Should provide for communication among team members

 Should act as an information repository to be used by maintenance engineers

 Should provide enough information to management to allow them to perform all program

management related activities

 Should describe to users how to operate and administer the system

 specify external system behavior

 Specify implementation constraints

 Easy to change

 Serve as reference tool for maintenance

 Record forethought about the life cycle of the system i.e. predict changes

 Characterize responses to unexpected events.

Figure 2.2 Users of a requirements document

IEEE suggests the following structure for requirements document

1. Introduction

1.1 Purpose of the requirements document

1.2 Scope of the product

1.3 Definitions, acronyms and abbreviations

CS8484-SOFTWARE ENGINEERING Department of CSE

6

2020-2021 Jeppiaar Institute of Technology

1.4 Overview of the remainder of the document

2. General description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 General constraints

2.5 Assumptions and dependencies

3. Specific requirements cover functional, non-functional and interface requirements.

i) This is obviously the most substantial part of the document but because of the wide variability in

organizational practice, it is not appropriate to define standard structure for this section.

ii) The requirements may document external interfaces, describe system functionality and

performance, specify logical database requirements, design constraints, emergent system

properties and quality characteristics.

4. Appendices

5. Index

CS8484-SOFTWARE ENGINEERING Department of CSE

7

2020-2021 Jeppiaar Institute of Technology

2.3 REQUIREMENT ENGINEERING PROCESS

Figure 2.3:The requirements engineering process

 The requirements engineering process includes a feasibility study, requirements elicitation and

analysis, requirements specification and requirements management

2.3.1 Feasibility Studies

 A feasibility study decides whether or not the proposed system is worthwhile

 A short focused study that checks

• If the system contributes to organizational objectives

• If the system can be engineered using current technology and within budget

• If the system can be integrated with other systems that are used

 Based on information assessment (what is required), information collection and report writing

 Questions for people in the organization

• What if the system wasn‘t implemented?

• What are current process problems?

• How will the proposed system help?

• What will be the integration problems?

• Is new technology needed? What skills?

• What facilities must be supported by the proposed system?

2.3.2 Requirement Elicitation and analysis

 Sometimes called requirements elicitation or requirements discovery

 Involves technical staff working with customers to find out about

• The application domain

CS8484-SOFTWARE ENGINEERING Department of CSE

8

2020-2021 Jeppiaar Institute of Technology

 May involve end-users, managers, engineers involved in maintenance, domain experts, trade

unions, etc.

• These are called stakeholders

a) Problems of requirements analysis

 Stakeholders don‘t know what they really want

 Stakeholders express requirements in their own terms

 Different stakeholders may have conflicting requirements

 Organizational and political factors may influence the system requirements

 The requirements change during the analysis process

• New stakeholders may emerge and the business environment change.

b) System models

 Different models may be produced during the requirements analysis activity

 Requirements analysis may involve three structuring activities which result in these different

models

• Partitioning – Identifies the structural (part-of) relationships between entities

• Abstraction – Identifies generalities among entities

• Projection – Identifies different ways of looking at a problem

c) Scenarios

 Scenarios are descriptions of how a system is used in practice

 They are helpful in requirements elicitation as people can relate to these more readily than abstract

statement of what they require from a system

 Scenarios are particularly useful for adding detail to an outline requirements description

d) Ethnography

 A social scientists spends a considerable time observing and analyzing how people actually work

 People do not have to explain or articulate their work

 Social and organizational factors of importance may be observed

 Ethnographic studies have shown that work is usually richer and more complex than suggested by

simple system models.

2.3.3 Requirements validation

 Concerned with demonstrating that the requirements define the system that the customer really

wants.

 Requirements error costs are high so validation is very important.

• Fixing a requirements error after delivery may cost up to 100 times the cost of fixing an

implementation error.

 Requirements checking

• Validity

• Consistency

• Completeness

• Realism

CS8484-SOFTWARE ENGINEERING Department of CSE

9

2020-2021 Jeppiaar Institute of Technology

Requirements validation techniques

 Reviews

• Systematic manual analysis of the requirements

 Prototyping

• Using an executable model of the system to check requirements.

 Test-case generation

• Developing tests for requirements to check testability

 Automated consistency analysis

• Checking the consistency of a structured requirements description

2.3.4 Requirements management

 Requirements management is the process of managing changing requirements during the

requirements engineering process and system development

 Requirements are inevitably incomplete and inconsistent

 New requirements emerge during the process as business needs change and a better

understanding of the system is developed

 Different viewpoints have different requirements and these are often contradictory.

2.3.4.1 Enduring and volatile requirements:

Enduring requirements:

 These are the stable requirements that are derived from the core activity of the organization.

These requirements are dependent upon the application domain of the software.

 For example: For banking system, transfer of money from one account to another is the enduring

requirement.

Volatile requirements:

 For certain requirements if there is a possibility that those requirements may get changed during

the development stage or after the system becomes operational, then such requirements are called

volatile requirements.

2.3.4.2 Requirement Management Planning

Traceability is concerned with relationship between requirements their sources and the system

design. Using traceability the requirement finding becomes easy.

Various types of traceability are

1. Source traceability

2. Requirements traceability

3. Design traceability

Steps involved in planning requirement process

 Requirement identification : Requirements are individually identified

 Change Management Process : Process plan followed when analysing a requirement

 Traceability Policies : The amount of information about requirement

 Case Tool Support : The tool support which is required to manage

CS8484-SOFTWARE ENGINEERING Department of CSE

10

2020-2021 Jeppiaar Institute of Technology

 Rapid, iterative development of the prototype is essential so that costs are controlled and system

stakeholders can experiment with the prototype early in the software process.

A software prototype can be used in a software development process in several ways:

1. In the requirements engineering process, a prototype can help with the elicitationand validation of

system requirements.

2. In the system design process, a prototype can be used to explore particular softwaresolutions and

to support user interface design.

3. In the testing process, a prototype can be used to run back-to-back tests withthe system that will

be delivered to the customer.

 System prototypes allow users to see how well the system supports their work.

 They may get new ideas for requirements and find areas of strength and weakness in the software.

They may then propose new system requirements. Furthermore, as the prototype is developed, it

may reveal errors and omissions in the requirements that have been proposed.

 A system prototype may be used while the system is being designed to carry out design

experiments to check the feasibility of a proposed design.

For example,

 A database design may be prototyped and tested to check that it allows for the most efficient data

access for the most common user queries.

 Prototyping is also an essential part of the user interface design process.

 Because of the dynamic nature of user interfaces, textual descriptions and diagrams are not good

enough for expressing the user interface requirements.

 When a system prototype is available, we can reduce the effort involved in result checking by

running back-to-back tests figure Back-to back testing. The same test cases are submitted to the

prototype and to the system under test. If both systems give the same result, the test case has

probably not detected a fault. If the results differ, it may mean that there is a system fault and the

reasons for the difference should be investigated.

 Finally, as well as supporting software process activities, prototypes can be used to reduce the time

required to develop user documentation and to train users with the system.

Figure 2.4: Back-to back testing

CS8484-SOFTWARE ENGINEERING Department of CSE

11

2020-2021 Jeppiaar Institute of Technology

 Prototyping in the Software Process

a)System prototyping

 Prototyping is the rapid development of a system

 Now, the boundary between prototyping and normal system development is blurred and many

systems are developed using an evolutionary approach

b) Uses of system prototypes

 The principal use is to help customers and developers understand the requirements for the system

o Requirements elicitation. Users can experiment with a prototype to see how the system supports

their work

o Requirements validation. The prototype can reveal errors and omissions in the requirements

 Prototyping can be considered as a risk reduction activity which reduces requirements risks.

c) Prototyping benefits

 Misunderstandings between software users and developers are exposed

 Missing services may be detected and confusing services may be identified

 A working system is available early in the process

 The prototype may serve as a basis for deriving a system specification

 The system can support user training and system testing

d) Prototyping in the software process

 Evolutionary prototyping

An approach to system development where an initial prototype is produced and refined through a

number of stages to the final system

Figure2.5 Prototyping Process

 Throw-away prototyping

A prototype which is usually a practical implementation of the system is produced to help discover

requirements problems and then discarded. The system is then developed using some other

development process

2.3.5 Data Model

 Used to describe the logical structure of data processed by the system

 Entity-relation-attribute model sets out the entities in the system, the relationships between these

CS8484-SOFTWARE ENGINEERING Department of CSE

12

2020-2021 Jeppiaar Institute of Technology

i) The UML does not include a specific notation for this database modelling, as it assumes an object-

oriented development process and models data using objects and their relationships. However, you

can use the UML to represent a semantic data model. You can think of entities in an ERA model

as simplified object classes (they have no operations), attributes as class attributes and named

associations between the classes as relations.

ii) Like all graphical models, data models lack detail, and you should maintain more detailed

descriptions of the entities, relationships and attributes that are included in the model. You may

collect these more detailed descriptions in a repository or data dictionary.

The advantages of using a data dictionary are:

1. It is a mechanism for name management. Many people may have to invent names for entities

and relationships when developing a large system model. These names should be used consistently

and should not clash. The data dictionary software can check for name uniqueness where necessary

and warn requirements analysts of name duplications.

2. It serves as a store of organisational information.

As the system is developed, information that can link analysis, design, implementation and

evolution is added to the data dictionary, so that all information about an entity is in one place.

Figure 2.6: Examples of data dictionary entries

Figure 2.7:Semantic data model for the LIBSYS system

CS8484-SOFTWARE ENGINEERING Department of CSE

13

2020-2021 Jeppiaar Institute of Technology

The data dictionary entries shown in Figure 2.8(Examples of data dictionary entries) define the

names in the semantic data model for LIBSYS.

2.3.6 Functional Model

 Information is transformed as it flows through a computer-based system.

 The system accepts input in a variety of forms; applies hardware, software, and human elements

to transform it; and produces output in a variety of forms.

Figure 2.8 Information flow model

 Input may be a control signal transmitted by a transducer, a series of numbers typed by a human

operator, a packet of information transmitted on a network link, or a voluminous data file retrieved

from secondary storage.

 The transform(s) may comprise a single logical comparison, a complex numerical algorithm, or a

rule-inference approach of an expert system.

 Output may light a single LED or produce a 200-page report.

 In effect, we can create a flow model for any computer-based system, regardless of size and

complexity.

 Structured analysis began as an information flow modeling technique. A computer-based system

is represented as an information transform as shown in Figure 2.8 above.

 A rectangle is used to represent an external entity; that is, a system element (e.g., hardware, a

person, and another program) or another system that produces information for transformation by

the software or receives information produced by the software.

 A circle (sometimes called a bubble) represents a process or transform that is applied to data (or

control) and changes it in some way.

 An arrow represents one or more data items (data objects). All arrows on a data flow diagram

should be labeled.

 The double line represents a data store—stored information that is used by the software.

 It is important to note that no explicit indication of the sequence of processing or conditional logic

is supplied by the diagram.

 Procedure or sequence may be implicit in the diagram.

CS8484-SOFTWARE ENGINEERING Department of CSE

14

2020-2021 Jeppiaar Institute of Technology

2.3.7 Data Flow Diagrams

 A data flow diagram is a graphical representation that depicts information flow and the transforms

that are applied as data move from input to output.

 The basic form of a data flow diagram, also known as a data flow graph or a bubble chart, is

illustrated in Figure 2.8.

 The data flow diagram may be used to represent a system or software at any level of abstraction.

 In fact, DFDs may be partitioned into levels that represent increasing information flow and

functional detail.

 Therefore, the DFD provides a mechanism for functional modeling as well as information flow

modeling.

 A level 0 DFD, also called a fundamental system model or a context model, represents the entire

software element as a single bubble with input and output data indicated by incoming and outgoing

arrows, respectively.

 Additional processes (bubbles) and information flow paths are represented as the level 0 DFD is

partitioned to reveal more detail.

 For example, a level 1 DFD might contain five or six bubbles with interconnecting arrows.

 As we noted earlier, each of the bubbles may be refined or layered to depict more detail.

 Figure 2.9below illustrates this concept. A fundamental model for system F indicates the primary

input is A and ultimate output is B.

Figure 2.9 Information flow model

 We refine the F model into transformsf1 to f7.

 Note that information flow continuity must be maintained; that is, input and output to each

refinement must remain the same.

 This concept, sometimes called balancing, is essential for the development of consistent models.

 Further refinementoff4 depicts detail in the form of transforms f41 to f45. Again, the input (X, Y)

and output (Z) remain unchanged.

 DFD graphical notation must be augmented with descriptive text.

 A process specification (PSPEC) can be used to specify the processing details implied by a bubble

within a DFD.

 The process specification describes the input to a function, the algorithm that is applied to

transform the input, and the output that is produced.

CS8484-SOFTWARE ENGINEERING Department of CSE

15

2020-2021 Jeppiaar Institute of Technology

 In addition, the PSPEC indicates restrictions and limitations imposed on the process (function),

performance characteristics that are relevant to the process, and design constraintsthat may

influence the way in which the process will be implemented.

a) Extensions for Real-Time Systems

 A real-time system must interact with the real world in a time frame dictated by the real world.

 Aircraft avionics, manufacturing process control, consumer products, andindustrial

instrumentation are but a few of hundreds of real-time software applications.

 To accommodate the analysis of real-time software, a number of extensions to the basic Notation

for structured analysis have been defined.

 These extensions, developed by Ward and Mellor and Hatley and Pirbhai and illustrated.

b) Ward and Mellor Extensions

Ward and Mellor extend basic structured analysis notation to accommodate the following

demands imposed by a real-time system:

• Information flow is gathered or produced on a time-continuous basis.

• Control information is passed throughout the system and associated controlprocessing.

• Multiple instances of the same transformation are sometimes encountered in multitasking

situations.

• Systems have states and a mechanism causes transition between states.

In a significant percentage of real-time applications, the system must monitor

timecontinuousinformation generated by some real-world process.

 For example, a real time test monitoring system for gas turbine engines might be required to

monitor turbine speed, combustor temperature, and a variety of pressure probes on a continuous

basis.

 One extension to basic structured analysis notation, shown in Figure 2.10 above, provides a

mechanism for representing time-continuous data flow.

 The double headed arrow is used to represent time-continuous flow while a single headed arrow

is used to indicate discrete data flow.

 In the figure 2.10, monitored temperature is measured continuously while a single value for

temperature set point is also provided.

 The process shown in the figure 2.10produces a time-continuous output, corrected value.

Figure 2.10 Time-continuous Flow

CS8484-SOFTWARE ENGINEERING Department of CSE

16

2020-2021 Jeppiaar Institute of Technology

 A process that handles only control flows, called a control process, is similarly represented using

a dashed bubble.

 Control flow can be input directly to a conventional process or into a control process.

 Figure 2.12 illustrates control flow and processing as it would be represented using Ward and

Mellor notation.

 The figure 2.12 illustrates a top-level view of a data and control flow for a manufacturing cell.

 As components to be assembled by a robot are placed on fixtures, a status bit is set within a parts

status buffer (a control store) that indicates the presence or absence of each component.

Figure 2.11 Data and Control Flows

 Event information contained within the parts status buffer is passed as a bit string to a process,

monitor fixture and operator interface.

 The process will read operator commands only when the control information, bit string, indicates

that all fixtures contain components.

 An event flag, start/stop flag, is sent to robot initiation control, a control process that enables

further command processing.

 Other data flows occur as a consequence of the process activate event that is sent to process robot

commands.

c) Hatley and Pirbhai Extensions

 The Hatley and Pirbhai focus less on the creation of additional graphical symbols and more on the

representation and specification of the control-oriented aspects of the software.

 The dashed arrow is once again used to represent control or event flow.

 Unlike Ward and Mellor, Hatley and Pirbhai suggest that dashed and solid notation be represented

separately.

 Therefore, a control flow diagram is defined.

 The CFD contains the same processes as the DFD, but shows control flow, rather than data flow.

 Instead of representing control processes directly within the flow model, a notational reference (a

solid bar) to a control specification (CSPEC) is used.

CS8484-SOFTWARE ENGINEERING Department of CSE

17

2020-2021 Jeppiaar Institute of Technology

 In essence, the solid bar can be viewed as a "Window" into an "executive" (the CSPEC) that

controls the processes (functions) represented in the DFD based on the event that is passed through

the window.

 A process specification is used to describe the inner workings of a process represented in a flow

diagram.

 Data flow diagrams are used to represent data and the processes that manipulate it.

 Control flow diagrams show how events flow among processes and illustrate those external events

that cause various processes to be activated.

 The interrelationship between the process and control models is shown schematically in Figure

2.12.

 The process model is "connected" to the control model through data conditions.

 The control model is "connected" to the process model through process activation information

contained in the CSPEC.

 A data condition occurs whenever data input to a process result in control output.

 This situation is illustrated in Figure 2.12, part of a flow model for an automated monitoring and

control system for pressure vessels in an oil refinery.

 The process check and convert pressure implements the algorithm described in the PSPEC pseudo

code shown.

 When the absolute tank pressure is greater than an allow able maximum, an above pressure

event is generated.

 Note that when Hatley and Pirbhai notation is used, the data flow is shown as part of a DFD, while

the control flow is noted separately as part of a control flow diagram.

 As we noted earlier, the vertical solid bar into which the above pressure event flows is a pointer

to the CSPEC.

 Therefore, to determine what happens when this event occurs, we must check the CSPEC.

 The control specification (CSPEC) contains a number of important modeling tools.

 A process activation table is used to indicate which processes are activated by a given event.

 For example, a process activation table (PAT)for Figure 2.12might indicate that the above

pressure event would cause a process reduce tank pressure (not shown) to be invoked.

Figure 2.12 Relationship between data and control models

CS8484-SOFTWARE ENGINEERING Department of CSE

18

2020-2021 Jeppiaar Institute of Technology

 The STD is a behavioral model that relies on the definition of a set of system states and is described

as following section.

Figure 2.13 Data conditions

Figure 2.14 Level 1 CFD for photocopier software

2.3.8 Behavioral Model

 Behavioural models are used to describe the overall behaviour of the system.

 Two types of behavioural model here: data-flow models, which model the data processing in the

system, and state machine models, which model how the system reacts to events.

 These models may be used separately or together, depending on the type of system that is being

developed.

a) Data-flow models

 Most business systems are primarily driven by data. They are controlled by the data inputs to the

system with relatively little external event processing. A dataflow model may be all that is needed

to represent the behaviour of these systems.

 Data-flow models are an intuitive way of showing how data is processed by a system.

 The notation used in these models represents functional processing (rounded rectangles), data

CS8484-SOFTWARE ENGINEERING Department of CSE

19

2020-2021 Jeppiaar Institute of Technology

Figure2.15: Data-flow diagram of order processing

 Data-flow models are used to show how data flows through a sequence of processing steps.

 For example, a processing step could be to filter duplicate records in a customer database.

 The data is transformed at each step before moving on to the next stage.

 These processing steps or transformations represent software processes or functions when data-

flow diagrams are used to document a software design.

 A data-flow model, which shows the steps involved in processing an order for goods (such as

computer equipment) in an organisation, is illustrated in the above figure 2.14

 This particular model describes the data processing in the Place equipment order activity in the

overall process model shown in below Figure 2.15 (Process model of equipment procurement.)

illustrates a process model for the process of procuring equipment in an organisation.

 This involves specifying the equipment required, finding and choosing suppliers, ordering the

equipment, taking delivery of the equipment and testing it after delivery.

 When specifying computer support for this process, you have to decide which of these activities

will actually be supported. The other activities are outside the boundary of the system.

Figure2.16: Process model of equipment procurement

CS8484-SOFTWARE ENGINEERING Department of CSE

20

2020-2021 Jeppiaar Institute of Technology

Figure 2.17: Data-flow diagram of an insulin pump

2.3.9 State machine models

 They show the system‘s responses to stimuli so are often used for modeling real-time systems

 State machine models show system states as nodes and events as arcs between these nodes.

 When an event occurs, the system moves from one state to another

 State charts are an integral part of the UML

 It does not show the flow of data within the system.

 This typeof model is often used for modelling real-time systems.

 For example, the real-time alarm system responds to stimuli from movement sensors, door opening

sensors, and so on.

 A state machine model of a system assumes that, at any time, the system is in one of a number of

possible states.

 When a stimulus is received, this may trigger a transition to a different state.

 For example, a system controlling a valve may move from a state ‘Valve open’ to a state ‘Valve

closed’ when an operator command (the stimulus) is received.

 This approach to system modelling is illustrated in Figure 2.18(State machine model of a simple

microwave oven)

 This diagram shows a state machine model of a simple microwave oven equipped with buttons to

set the power and the timer and to start the system.

Figure2.18: State machine model of a simple microwave oven

CS8484-SOFTWARE ENGINEERING Department of CSE

21

2020-2021 Jeppiaar Institute of Technology

 The sequence of actions in using the microwave is:

 Select the power level (either half-power or full-power).

 Input the cooking time.

 Press Start, and the food is cooked for the given time.

 For safety reasons, the oven should not operate when the door is open and, on completion of

cooking, a buzzer is sounded.

 The oven has a very simple alphanumeric display that is used to display various alerts and warning

messages.

 The rounded rectangles in model represent system states.

 They include a brief description(following ‘do’) ofthe actions taken in that state.

 The labelled arrows represent stimuli that force a transition from one state to another.

 Therefore, from Figure that the system responds initially to either the full-power or the half- power

button.

 Users can change their mind after selecting one of these and press the other button.

 The time is set and, if the door is closed, the Start button is enabled. Pushing this button starts the

oven operation and cooking takes place for the specified time.

 The problem with the state machine approach is that the number of possible states increases

rapidly.

 For large system models, therefore, some structuring of these state models is necessary.

 One way to do this is by using the notion of a super state that encapsulates a number of separate

states.

 This super state looks like a single state on a high-level model but is then expanded in more detail

on a separate diagram.

 To illustrate this concept, consider the Operation state in Figure 2.18(State machine model of a

simple microwave oven). This is a superstatethat can be expanded, as illustrated in Figure 2.19

(Microwave oven operation).

 The Operation state includes a number of sub-states.

 It shows that operation starts with a status check, and that if any problems are discovered, an alarm

is indicated and operation is disabled.

 Cooking involves running the microwave generator for the specified time; on completion, a buzzer

is sounded.

 Figure 2.19: Microwave oven operation

CS8484-SOFTWARE ENGINEERING Department of CSE

22

2020-2021 Jeppiaar Institute of Technology

2.4 STRUCTURED ANALYSIS

2.4.1 Creating an Entity/Relationship Diagram

The entity/relationship diagram enables a software engineer to fully specify the data objects that

are input and output from a system, the attributes that define the properties of these objects, and

their relationships.

The following approach is taken:

1. During requirements elicitation, customers are asked to list the “things” thatthe application

orbusiness process addresses. These “things” evolve into a list of input and output data objects as

well as external entities that produce or consume information.

2. Taking the objects one at a time, the analyst and customer define whether or not a connection

(unnamed at this stage) exists between the data object and other objects.

3. Wherever a connection exists, the analyst and the customer create one or more

object/relationship pairs.

4. For each object/relationship pair, cardinality and modality are explored.

5. Steps 2 through 4 are continued iteratively until all object/relationships have been defined. It is

common to discover omissions as this process continues. New objects and relationships will

invariably be added as the number of iterations grows.

6. The attributes of each entity are defined.

7. An entity relationship diagram is formalized and reviewed.

8. Steps 1 through 7 are repeated until data modelling is complete.

For Safe Home the following (partial) list of “things” are relevant to the problem:

• homeowner

• control panel

• sensors

• security system

For example, referring to Figure 2.20 (Establishing connections), a direct connection exists

between homeowner and control panel, security system, and monitoring service.

A single connection exists between sensor and security system, and so forth.

For example, the connection between sensor and security system is determined to have the

following object/relationship pairs:

1. security system monitors sensor

2. security system enables/disables sensor

3. security system tests sensor

4. security system programs sensor

 Figure 2.20: Establishing connections

CS8484-SOFTWARE ENGINEERING Department of CSE

23

2020-2021 Jeppiaar Institute of Technology

 Each of these object/relationship pairs is analysed to determine cardinality and modality.

 For example, considering the object/relationship pair security system monitors sensor, the

cardinality between security system and sensor is one to many.

 The modality is one occurrence of security system (mandatory) and at least one occurrence

ofsensor (mandatory).

 Connecting line between security system and sensor would be modified as shown in below Figure

2.21. Similar analysis would be applied to all other data objects.

Figure 2.21: Developing relationships and cardinality/ modality

2.4.2 Creating a Data Flow Model

 The data flow diagram enables the software engineer to develop models of the information domain

and functional domain at the same time. the DFD is refined into greater levels of detail, so

decomposition of the system, takes place.

 A few simple guidelines can aid immeasurably during derivation of a data flow diagram:

(1) The level 0 data flow diagram should depict the software/system as a single bubble;

(2) Primary input and output should be carefully noted;

(3) Refinement should begin by isolating candidate processes, data objects, and stores to

berepresented at the next level;

(4) All arrows and bubbles should be labelled with meaningful names;

(5) Information flow continuity must be maintained from level to level, and

(6) One bubble at a time should be refined. There is a natural tendency to

overcomplicate the data flow diagram.

 Again considering the SafeHomeproduct, a level 0 DFD for the system is shown in

Figure2.23Context-level DFD for Safe Home. The primary external entities (boxes) produce

information for use by the system and consume information generated by the system.

 The labelled arrows represent data objects or data object type hierarchies.

 The level 0 DFD is now expanded into a level 1 model.

 All verbs areSafeHomeprocesses; that is, they may ultimately be represented as bubbles in a sub-

sequent DFD. All nouns are either external entities (boxes), data or control objects (arrows), or

CS8484-SOFTWARE ENGINEERING Department of CSE

24

2020-2021 Jeppiaar Institute of Technology

 Figure 2.22 Context-level DFD for Safe Home

Figure 2.23 level 1 DFD

 Using this information, a level 1 DFD is shown in Figure 2.22 (The context level process) has been

expanded into six processes derived from an examination of the grammatical parse.

 Similarly, the information flow between processes at level 1 has been derived from the parse.

 The processes represented at DFD level 1 can be further refined into lower levels.

 Note once again that information flow continuity has been maintained between levels.

 The refinement of DFDs continues until each bubble performs a simple function.

 That is, until the process represented by the bubble performs a function that would beeasily

implemented as a program component (refine DFDs until each bubble is "single-minded.")

2.4.3 Creating a Control Flow Model

 A data flow model is “stripped" of all data flow arrows. Events and control items (dashed arrows)

are then added to the diagram and a "window" (a vertical bar) into the control specification is

shown. But how are events selected?

 We have already noted that an event or control item is implemented as a Booleavalue or a din list

of conditions (empty, jammed, full). To select potential candidate events, the following guidelines

CS8484-SOFTWARE ENGINEERING Department of CSE

25

2020-2021 Jeppiaar Institute of Technology

Figure 2.24 Level 2 DFD that refines the monitor sensors process

• List all sensors that are "read" by the software.

• List all interrupt conditions.

• List all "switches" that are actuated by an operator.

• List all data conditions.

• Recalling the noun/verb parse that was applied to the processing narrative,review all "control

items" as possible CSPEC inputs/outputs.

• Describe the behaviour of a system by identifying its states; identify how each

state is reached; and define the transitions between states.

• Focus on possible omissions—a very common error in specifying control;

Forexample, ask: "Is there any other way I can get to this state or exit from it?"

 A level 1 CFD for SafeHomesoftware is illustrated.

 Among the events and control items noted are sensor event ,blink flag and start/stop switch.

 When the event flows into the CSPEC window from the outside world, it implies that the CSPEC

will activate one or more of the processes shown in the CFD.

 When a control item emanates from a process and flows into the CSPEC window, control and

activation of some other process or an outside entity is implied.

2.4.4 The Control Specification

 The control specification (CSPEC) represents the behaviour of the system in two different ways.

 The CSPEC contains a state transition diagram that is a sequential specification of behaviour. It

can also contain a program activation table—a combinatorial specification of behaviour.

 The labelled transition arrows indicate how the system responds to events as it traverses the four

states defined at this level

 For example, in the figure STD indicates that the only transition from the reading user input state

occurs when the start/stop switch is encountered and a transition to the monitoring system status

state occurs.

 This is an error in specification and would, we hope, be uncovered during review and corrected.

CS8484-SOFTWARE ENGINEERING Department of CSE

26

2020-2021 Jeppiaar Institute of Technology

Figure 2.25 Level 1 CFD for Safe Home

Figure 2.26 State transition diagram for Safe Home

 A somewhat different mode of behavioral representation is the process activation table.

 The PAT represents information contained in the STD in the context of processes, not states.

 That is, the table indicates which processes (bubbles) in the flow model will be invoked when an

event occurs.

 Figure 2.27 Process activation table for Safe Home

CS8484-SOFTWARE ENGINEERING Department of CSE

27

2020-2021 Jeppiaar Institute of Technology

2.4.5 The Process Specification

 The process specification (PSPEC) is used to describe all flow model processes that appear at the

final level of refinement.

 The content of the process specification can include narrative text, a program design language

(PDL) description of the process algorithm, mathematical equations, tables, diagrams, or charts.

 To illustrate the use of the PSPEC, consider the process password transform represented in the

flow model for Safe Home. The PSPEC for this function might take the form:

a) PSPEC: process password

 The process password transform performs all password validation for the SafeHomesystem.

 Process password receives a four-digit password from the interact with user function.

 The password is first compared to the master password stored within the system.

 If the master password matches, <valid id message = true> is passed to the message and status

display function.

 If the master password does not match, the four digits are compared to a table of secondary

passwords (these may be assigned to house guests and/or workers who require entry to the home

when the owner is not present).

 If the password matches an entry within the table, <valid id message = true> is passed to the

message and status display function.

 If there is no match, <valid id message = false> is passed to the message and status display

function.

2.5 CLASSICAL ANALYSIS:

2.5.1 Structured System Analysis

● Structures system analysis — A nine-step technique to analyse client’s needs

● Step-wise refinement is used in many of steps

Step 1: Draw the Data Flow Diagram (DFD)

 A pictorial representation of all aspects of the logical data flow

 Logical data flow — What happens

 Physical data flow — How it happens

 Any non-trivial product contains many elements

 DFD is developed by stepwise refinement

 For large products a hierarchy of DFDs instead of one DFD

 Constructed by identifying data flows: Within requirements document or rapid prototype

 Four basic symbols

Source or destination of data

(double-square box)

Data flow (arrow)

Process (rounded rectangle)

Data store (open-ended

rectangle)

CS8484-SOFTWARE ENGINEERING Department of CSE

28

2020-2021 Jeppiaar Institute of Technology

Figure 2.28 Basic symbols

Step 2: Decide what sections to computerize and how (batchor online)

 Depending on client’s needs and budget limitations

 Cost-benefit analysis is applied

Step 3: Determine details of data flows

 Decide what data items must go into various data flows.

 Stepwise refinement of each flow.

 For larger products, a data dictionary is generated.

Step 4: Define logic of processes

 Determine what happens within each process.

 Use of decision trees to consider all cases.

Figure 2.29 Data flow

Step 5: Define data stores

 Exact contents of each store and its representation (format)

Step 6: Define physical resources

 File names, organization (sequential, indexed, etc.), storage medium, and records

 If a database management system (DBMS) used: Relevant information for each table

Step 7: Determine input-output specifications

 Input forms and screens

 Printed outputs

Step 8: Determine sizing

 Computing numerical data to determine hardware requirements

 Volume of input (daily or hourly)

 Frequency of each printed report and its deadline

 Size and number of records of each type to pass between CPUand mass storage

CS8484-SOFTWARE ENGINEERING Department of CSE

29

2020-2021 Jeppiaar Institute of Technology

Step 9: Determine hardware requirements

 Use of sizing information to determine mass storage requirements

 Mass storage for backup

 Determine if client’s current hardware system is adequate

 After approval by client: Specification document is handed to design team, and software process

continues

2.6 PETRI NETS

● Petri nets — Formal technique for describing concurrent interrelated activities

● Invented by Carl Adam Petri, 1962

● Consists of four parts

(1) A set of places

(2) A set of transitions

(3) An input function

(4) An output function

● Originally of interest to automata theorists

● Found wide applicability in computer science

 Performance evaluation

 Operating systems

 Software engineering

The Classical Petri Net Model:

A Petri net is a network composed of places(O) and transitions(∏)

Connections are directed and between a place and a transition, or a transition and a place(e.g.

Between “p1 and t1” or “t1 and p2” above)Tokens(.) are the dynamic objects.Another (equivalent)

notation is to use a solid bar for the transitions:

We may use either notation since they are equivalent, sometimes one makes the diagram easier to

read than the other.

The state of a Petri net is determined by the distribution of tokens over the places (we could

represent the above state as (1,2,1,1) for (p1,p2,p3,p4))

CS8484-SOFTWARE ENGINEERING Department of CSE

30

2020-2021 Jeppiaar Institute of Technology

 Transition t1 has three input places (p1, p2 and p3) and two output places (p3 and p4).

 Place p3 is both an input and an output place of t1.

Enabling Condition:

 Transitions are the active components and places and tokens are passive components.

 A transition is enabled if each of the input places contains tokens.

Transition t1 is not enabled, transition t2 is enabled.

Firing:

 An enabled transition may fire.

 Firing corresponds to consuming tokens from the input places and producing tokens for the output

places.

Firing is atomic (only one transition fires at a time, even if more than one is enabled)

2.7 THE DATA DICTIONARY

 Data dictionary provide an organized approach for representing the characteristics of each data

object and control item.

 The data dictionary has been proposed as a quasi-formal grammar for describing the content of

objects defined during structured analysis.

 This important modelling notation has been defined in the following manner :

The data dictionary is an organized listing of all data elements that are pertinent to the system,

with precise, rigorous definitions so that both user and system analyst will have a common

understanding of inputs, outputs, components of stores and [even] intermediate calculations.

 Today, the data dictionary is always implemented as part of a CASE "structured analysis and

design tool."

 Although the format of dictionaries varies from tool to tool, most contain the following

information:

Name Description

Name The primary name of the data or control item, the data store or

an external entity.
Alias other names used for the first entry

Where-used/how-

used

a listing of the processes that use the data or control item and

how itis used (e.g., input to the process, output from the process

process, as a store, as an external entity.

CS8484-SOFTWARE ENGINEERING Department of CSE

31

2020-2021 Jeppiaar Institute of Technology

 When a dictionary entry is created, the CASE tool scans DFDs and CFDs to determine which

processes use the data or control information and how it is used.

 For large projects, it is often quite difficult to determine the impact of a change.

 Many a software engineer has asked, "Where is this data object used? What else will have to

change if we modify it? What will the overall impact of the change be?" Because the data

dictionary can be treated as a database, the analyst can ask "where used/how used" questions, and

get answers to these queries.

 The notation used to develop a content description is noted in the following table:

 The notation enables a software engineer to represent composite data in one of the three

fundamental ways that it can be constructed:

1. As a sequence of data items.

2. As a selection from among a set of data items.

3. As a repeated grouping of data items. Each data item entry that is representedas part of a

sequence, selection, or repetition may itself be another compositedata item that needs further

refinement within the dictionary.

 The use of the data dictionary:

 The data dictionary provides us with a precise definition of telephone number for the DFD in

question.

 It indicates where and how this data item is used and any supplementary information that is

relevant to it.

 The data dictionary entry begins as follows:

 The content description is expanded until all composite data items have been represented as

elementary items or until all composite

 Items are represented in terms that would be well-known and unambiguous to all readers.

 It is also important to note that a specification of elementary data often restricts a system.

 For example, the definition of area code indicates that only three area codes (two toll-free and

one in South Florida) are valid for this system.

 The data dictionary defines information items unambiguously.

CS8484-Software Engineering Department of CSE

2020 - 2021 1 Jeppiaar Institute of Technology

Advantages:

1. Data dictionary support name management and avoid duplication.

2. It is a store of organisational knowledge linking analysis,design and implementation.

Important questions:

Difference between Functional and Non-functional Requirements

Functional Requirements Non-functional Requirements

The functional requirements specify the

features of the software system

The non-functional requirements specify the

properties of the software system.

Functional Requirements describe what the

product must do.

Non-functional Requirements describe how

he product should perform

The functional requirements specify the

actions with which the work is concerned.

The non-functional requirements specify the

experience of the user while using the

system.

Example: For a library management system

allowing user to read the article online is a

functional requirement.

Example: For a library management system,

for a user who wishes to read the article

online must be authenticated first.

Difference between Functional and Behavioural models:

Functional model Behavioural model

The functional model depicts all the

essential functionalities of the system

The behavioral model represents how system

behaves

The functional model is represented by

data flow and control flow diagrams

The behavioral model is represented by state

chart diagram

The DFDS can be represented by levels The state diagram has some number of states

and transitions

The functional diagram gives detailed

scenario of system which has to be

developed.

The behavioral model gives the abstract

representation of the system.

Difference between Data flow diagram and state transition diagram

Data flow diagram State Transition Diagram

Data flow diagram is graphical representation for

representing the information flow and the transforms

that are applied as data move from input to output

State transition diagram is a graphical

representation for representing the

behavior of a system by depicting its states

and the events that cause the system, to

change state

The data flow diagram is a collection of

process data store, flow of data

The State transition diagram is a collection

of states and events.

The data flow diagrams are used to represent the

system at any level of abstractions and the increasing

levels are used to expose more and more

functionalities in the system.

The state transition diagrams are typically

drawn at single level .They intended to

expose the overall behavior of the system.

CS8484-Software Engineering Department of CSE

2020 - 2021 1 Jeppiaar Institute of Technology

	Types of requirements
	2.1.1 FUNCTIONAL AND NON-FUNCTIONAL COMPONENTS:
	b) Examples:
	f) Non-Functional requirements:
	g) Non-Functional requirements classifications:
	h) Product requirements
	i) Organisational requirements
	j) Organisational requirements
	k) Examples of process requirements
	i) External requirements
	j) Examples of external requirements
	2.1.2 USER REQUIREMENT:
	2.1.3 SYSTEM REQUIREMENTS Purpose of SRS
	Ways of writing an SRS:
	Guidelines for Writing SRS:
	2.2 SOFTWARE REQUIREMENT DOCUMENT
	Figure 2.2 Users of a requirements document
	1. Introduction
	2. General description
	4. Appendices
	2.3.1 Feasibility Studies
	2.3.2 Requirement Elicitation and analysis
	a) Problems of requirements analysis
	b) System models
	c) Scenarios
	d) Ethnography
	2.3.3 Requirements validation
	Requirements validation techniques
	2.3.4 Requirements management
	2.3.4.1 Enduring and volatile requirements:
	Volatile requirements:
	2.3.4.2 Requirement Management Planning
	Figure 2.4: Back-to back testing
	b) Uses of system prototypes
	c) Prototyping benefits
	d) Prototyping in the software process
	Figure2.5 Prototyping Process
	2.3.5 Data Model
	2. It serves as a store of organisational information.
	Figure 2.6: Examples of data dictionary entries
	2.3.6 Functional Model
	Figure 2.8 Information flow model
	2.3.7 Data Flow Diagrams
	Figure 2.9 Information flow model
	a) Extensions for Real-Time Systems
	b) Ward and Mellor Extensions
	Figure 2.10 Time-continuous Flow
	Figure 2.11 Data and Control Flows
	c) Hatley and Pirbhai Extensions
	Figure 2.12 Relationship between data and control models
	Figure 2.13 Data conditions
	a) Data-flow models
	Figure2.15: Data-flow diagram of order processing
	Figure2.16: Process model of equipment procurement
	Figure2.18: State machine model of a simple microwave oven
	Figure 2.19: Microwave oven operation
	2.4 STRUCTURED ANALYSIS
	Figure 2.20: Establishing connections
	Figure 2.21: Developing relationships and cardinality/ modality
	Figure 2.22 Context-level DFD for Safe Home
	2.4.3 Creating a Control Flow Model
	Figure 2.24 Level 2 DFD that refines the monitor sensors process
	2.4.4 The Control Specification
	Figure 2.25 Level 1 CFD for Safe Home
	Figure 2.27 Process activation table for Safe Home
	a) PSPEC: process password
	2.5 CLASSICAL ANALYSIS:
	Step 1: Draw the Data Flow Diagram (DFD)
	Figure 2.28 Basic symbols
	Step 3: Determine details of data flows
	Step 4: Define logic of processes
	Figure 2.29 Data flow Step 5: Define data stores
	Step 6: Define physical resources
	Step 7: Determine input-output specifications
	Step 8: Determine sizing
	Step 9: Determine hardware requirements
	2.6 PETRI NETS
	The Classical Petri Net Model:
	Enabling Condition:
	Firing:
	2.7 THE DATA DICTIONARY
	Advantages:

