

JEPPIAAR INSTITUTE OF TECHNOLOGY

"Self-Belief | Self Discipline | Self Respect"

DEPARTMENT

OF

COMPUTER SCIENCE AND ENGINEERING

LECTURE NOTES-MA8402

PROBABILITY AND QUEUING THEORY

(Regulation 2017)

Unit I

1 Introduction

- 2 Discrete Random Variables
- 3 Continuous Random Variables
- 4 Moments
- 5 Moment generating functions
- 6 Binomial distribution
- 7 Poisson distribution
- 8 Geometric distribution
- 9 Uniform distribution
- 10 Exponential distribution
- 11 Gamma distribution

Introduction

Consider an experiment of throwing a coin twice. The outcomes {HH, HT, TH, TT} consider the sample space. Each of these outcome can be associated with a number

by specifying a rule of association with a number by specifying a rule of association (eg. The number of heads). Such a rule of association is called a random variable. We denote a random variable by the capital letter (X, Y, etc) and any particular value of the random variable by x and y.

Thus a random variable X can be considered as a function that maps all elements in the sample space S into points on the real line. The notation X(S)=x means that x is the value associated with the outcomes S by the Random variable X.

1 SAMPLE SPACE

Consider an experiment of throwing a coin twice. The outcomes $S = \{HH, HT, TH, TT\}$ constitute the sample space.

2 RANDOM VARIABLE

In this sample space each of these outcomes can be associated with a number by specifying a rule of association. Such a rule of association is called a random variables.

Eg : Number of heads

We denote random variable by the letter (X, Y, etc) and any particular value of the random variable by x or y.

 $S = \{HH, HT, TH, TT\} X(S) = \{2, 1, 1, 0\}$

Thus a random X can be the considered as a fun. That maps all elements in the sample space S into points on the real line. The notation X(S) = x means that x is the value associated with outcome s by the R.V.X.

Example

In the experiment of throwing a coin twice the sample space S is $S = {HH,HT,TH,TT}$. Let X be a random variable chosen such that X(S) = x (the number of heads).

Note

Any random variable whose only possible values are 0 and 1 is called a Bernoulli random variable.

2.1 DISCRETE RANDOM VARIABLE

Definition : A discrete random variable is a R.V.X whose possible values consitute finite

set of values or countably infinite set of values.

Examples

All the R.V.'s from Example : 1 are discrete R.V's

Remark

The meaning of $P(X \leq a)$.

 $P(X \leq\!\! a)$ is simply the probability of the set of outcomes 'S' in the sample space for which $X(s) \leq a.$

Or

 $P(X \le a) = P\{S : X(S) \le a\}$

In the above example : 1 we should write

 $P(X \le 1) = P(HH, HT, TH) = \frac{3}{4}$

Here $P(X \le 1) = \frac{3}{4}$ means the probability of the R.V.X (the number of heads) is less than or equal to 1 is $\frac{3}{4}$.

Distribution function of the random variable X or cumulative distribution of the random variable X

Def :

The distribution function of a random variable X defined in $(-\infty, \infty)$ is given by $F(x) = P(X \le x) = P\{s : X(s) \le x\}$

Note

Let the random variable X takes values x1, x2,, xn with probabilities P1, P2,, Pn and let x1 < x2 < < xn

Then we have

 $\begin{array}{ll} F(x) &= P(X < x1) = 0, \ -\infty < x < x, \\ F(x) &= P(X < x1) = 0, \ P(X < x1) + P(X = x1) &= 0 + p1 = p1 \\ F(x) &= P(X < x2) = 0, \ P(X < x1) + P(X = x1) + P(X = x2) = p1 + p2 \\ F(x) &= P(X < xn) = P(X < x1) + P(X = x1) + \dots + P(X = xn) \\ &= p1 + p2 + \dots + pn &= 1 \end{array}$

2.2 PROPERTIES OF DISTRIBUTION FUNCTIONS

Property : 1 $P(a < X \le b) = F(b) - F(a)$, where $F(x) = P(X \le x)$ Property : 2 $P(a \le X \le b) = P(X = a) + F(b) - F(a)$ Property : 3 $P(a < X < b) = P(a < X \le b) - P(X = b)$ = F(b) - F(a) - P(X = b) by prob (1)

2.3 PROBABILITY MASS FUNCTION (OR) PROBABILITY FUNCTION

Let X be a one dimenstional discrete R.V. which takes the values x_1, x_2, \ldots . To each possible outcome 'x_i' we can associate a number p_i .

i.e., $P(X = x_i) = P(x_i) = pi$ called the probability of x_i . The number $p_i = P(x_i)$ satisfies the following conditions.

(i)
$$p(x_i) \ge 0, \forall_i$$
 (ii) $\sum_{i=1}^{\infty} p(x_i) = 1$

The function p(x) satisfying the above two conditions is called the probability mass function (or) probability distribution of the R.V.X. The probability distribution {xi, pi} can be displayed in the form of table as shown below.

$\mathbf{X} = \mathbf{x}_i$	\mathbf{x}_1	x ₂	 x _i
$P(X = x_i) = p_i$	p1	p2	 pi

Notation

Let 'S' be a sample space. The set of all outcomes 'S' in S such that X(S) = x is denoted by writing X = x.

$$\begin{split} P(X = x) &= P\{S : X(s) = x\} \\ \||ly \ P(x \le a) = P\{S : X() \in (-\infty, a)\} \\ \text{and } P(a \le x \le b) &= P\{s : X(s) \in (a, b)\} \\ P(X = a \text{ or } X = b) &= P\{(X = a) \cup (X = b)\} \\ P(X = a \text{ and } X = b) &= P\{(X = a) \cap (X = b)\} \text{ and so on.} \end{split}$$

Theorem :1 If X1 and X2 are random variable and K is a constant then KX_1 , $X_1 + X_2$,

 X_1X_2 , $K_1X_1 + K_2X_2$, X_1 - X_2 are also random variables.

Theorem :2

If 'X' is a random variable and $f(\bullet)$ is a continuous function, then f(X) is a random variable.

Note

If F(x) is the distribution function of one dimensional random variable then

I. $0 \le F(x) \le 1$ II. If x < y, then $F(x) \le F(y)$ III. $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$ IV. $F(\infty) = \lim_{x \to \infty} F(x) = 1$ V. If 'X' is a discrete R.V. taking values x_1, x_2, x_3 Where $x_1 < x_2 < x_{i-1} x_i$ then $P(X = x_i) = F(x_i) - F(x_{i-1})$

Example:

A random variable X has the following probability function

Values of X	0	1	2	3	4	5	6	7	8
Probability P(X)	а	3a	5a	7a	9a	11a	13a	15a	17a

(i) Determine the value of 'a'

- (ii) Find $P(X \le 3)$, $P(X \ge 3)$, $P(0 \le X \le 5)$
- (iii) Find the distribution function of X.

Solution

Table 1

Values of X	0	1	2	3	4	5	6	7	8
p(x)	а	3a	5a	7 a	9a	11a	13a	15a	17a

(i) We know that if p(x) is the probability of mass function then

 $\sum_{i=1}^{8} p(x_i) = 1$ p(0) + p(1) + p(2) + p(3) + p(4) + p(5) + p(6) + p(7) + p(8) = 1a + 3a + 5a + 7a + 9a + 11a + 13a + 15a + 17a1 = 81 a = 1 1/81 a = put a = 1/81 in table 1, e get table 2 Table 2 X = x 0 7 1 2 3 4 5 6 8 15/81 11/81 P(x)1/81 3/81 5/81 7/81 9/81 13/81 17/81 (ii) P(X < 3)= p(0) + p(1) + p(2)= 1/81 + 3/81 + 5/81 = 9/81(ii) $P(X \ge 3)$ = 1 - p(X < 3)= 1 - 9/81= 72/81= p(1) + p(2) + p(3) + p(4) here 0 & 5 are not include (iii) P(0 < x < 5)= 3/81 + 5/81 + 7/81 + 9/81

$$= \frac{3+5+7+8+9}{81} = \frac{24}{81}$$

(iv) To find the distribution function of X using table 2, we get

$\mathbf{X} = \mathbf{x}$	$\mathbf{F}(\mathbf{X}) = \mathbf{P}(\mathbf{x} \le \mathbf{x})$
0	F(0) = p(0) = 1/81
1	$F(1) = P(X \le 1) = p(0) + p(1)$ = 1/81 + 3/81 = 4/81
2	$F(2) = P(X \le 2) = p(0) + p(1) + p(2)$ = 4/81 + 5/81 = 9/81
3	$F(3) = P(X \le 3) = p(0) + p(1) + p(2) + p(3)$ = 9/81 + 7/81 = 16/81
4	$F(4) = P(X \le 4) = p(0) + p(1) + \dots + p(4)$ = 16/81 + 9/81 = 25/81
5	$F(5) = P(X \le 5) = p(0) + p(1) + \dots + p(4) + p(5)$ = 2/81 + 11/81 = 36/81
6	$F(6) = P(X \le 6) = p(0) + p(1) + \dots + p(6)$ = 36/81 + 13/81 = 49/81
7	$F(7) = P(X \le 7) = p(0) + p(1) + \dots + p(6) + p(7)$ = 49/81 + 15/81 = 64/81
8	$\begin{array}{l} F(8) &= P(X \leq 8) = p(0) + p(1) + \dots + p(6) + p(7) + p(8) \\ &= 64/81 + 17/81 = 81/81 = 1 \end{array}$

3 CONTINUOUS RANDOM VARIABLE

Def : A R.V.'X' which takes all possible values in a given internal is called a continuous random variable.

Example : Age, height, weight are continuous R.V.'s.

3.1 PROBABILITY DENSITY FUNCTION

Consider a continuous R.V. 'X' specified on a certain interval (a, b) (which can also be a infinite interval $(-\infty, \infty)$).

If there is a function y = f(x) such that

$$\lim_{\Delta x \to 0} \frac{P(x < X < x + \Delta x)}{\Delta x} = f(x)$$

Then this function f(x) is termed as the probability density function (or) simply density function of the R.V. 'X'.

It is also called the frequency function, distribution density or the probability density function.

The curve y = f(x) is called the probability curve of the distribution curve.

Remark

If f(x) is p.d.f of the R.V.X then the probability that a value of the R.V. X will fall in some interval (a, b) is equal to the definite integral of the function f(x) a to b.

$$P(a < x < b) = \int_{a}^{b} f(x) dx$$
 (or)
$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

3.2 PROPERTIES OF P.D.F

The p.d.f f(x) of a R.V.X has the following properties

1. In the case of discrete R.V. the probability at a point say at x = c is not zero. But in the case of a continuous R.V.X the probability at a point is always zero.

$$P(X = c) = \int_{-\infty}^{\infty} f(x) dx = [x]_{c}^{C} = C - C = 0$$

2. If x is a continuous R.V. then we have $p(a \le X \le b) = p(a \le X \le b)$

= p(a < X V b)

IMPORTANT DEFINITIONS INTERMS OF P.D.F

If f(x) is the p.d.f of a random variable 'X' which is defined in the interval (a, b) then

i	Arithmetic mean	$\int_{a}^{b} x f(x) dx$
ii	Harmonic mean	$\int_{a}^{b} \frac{1}{x} f(x) dx$
iii	Geometric mean 'G' log G	$\int_{a}^{b} \log x f(x) dx$
iv	Moments about origin	$\int_{a}^{b} x^{r} f(x) dx$
v	Moments about any point A	$\int_{a}^{b} (x-A)^{r} f(x) dx$
vi	Moment about mean μ_r	$\int_{a}^{b} (x - mean)^{r} f(x) dx$
vii	Variance μ_2	$\int_{a}^{b} (x - mean)^2 f(x) dx$
viii	Mean deviation about the mean is M.D.	$\int_{a}^{b} x - mean f(x) dx$

3.3 Mathematical Expectations

Def:Let 'X' be a continuous random variable with probability density function f(x). Then the mathematical expectation of 'X' is denoted by E(X) and is given by

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

It is denoted by

$$\mu'_r = \int_{-\infty}^{\infty} x^r f(x) dx$$

Thus

 $\mu'_{1} = E(X) \qquad (\mu'_{1} \text{ about origin})$ $\mu'_{2} = E(X^{2}) \qquad (\mu'_{2} \text{ about origin})$ $\therefore \text{ Mean } = \overline{X} = \mu'_{1} = E(X)$

And

Variance
$$= \mu_2' - \mu_2'^2$$

Variance $= E(X^2) - [E(X)]^2$ (a)

* rth moment (abut mean)

Now

$$E\{X - E(X)\}^{r} = \int_{-\infty}^{\infty} \{x - E(X)\}^{r} f(x) dx$$
$$= \int_{-\infty}^{\infty} \{x - \overline{X}\}^{r} f(x) dx$$

Thus

$$\mu_{r} = \int_{-\infty}^{\infty} \{x - \overline{X}\}^{r} f(x) dx$$
(b)
Where
$$\mu_{r} = E[X - E(X)^{r}]$$

This gives the r^{th} moment about mean and it is denoted by μ_r Put r = 1 in (B) we get

$$\mu_{\rm r} = \int_{-\infty}^{\infty} \{x - \overline{X}\} f(x) dx$$

$$= \int_{-\infty}^{\infty} x f(x) dx - \int_{-\infty}^{\infty} \overline{x} f(x) dx$$

= $\overline{X} - \overline{X} \int_{-\infty}^{\infty} f(x) dx$ $\left[\because \int_{-\infty}^{\infty} f(x) dx = 1 \right]$
= $\overline{X} - \overline{X}$
= 0

Put r = 2 in (B), we get

 μ_1

$$\mu_2 = \int_{-\infty}^{\infty} (x - \overline{X})^2 f(x) dx$$

Variance = μ_2 = $E[X - E(X)]^2$

Which gives the variance interms of expectations. Note

Let g(x) = K (Constant), then

$$E[g(X)] = E(K) = \int_{-\infty}^{\infty} K f(x) dx$$

= $K \int_{-\infty}^{\infty} f(x) dx$ [$:: \int_{-\infty}^{\infty} f(x) dx = 1$]
= $K \cdot 1$ = K

Thus $E(K) = K \Rightarrow E[a \text{ constant}] = \text{constant}.$

3.4 EXPECTATIONS (Discrete R.V.'s)

Let 'X' be a discrete random variable with P.M.F p(x)

Then

$$\begin{split} E(X) &= \sum_{x} x \ p(x) \\ \text{For discrete random variables 'X'} \\ E(X^{r}) &= \sum_{x} x^{r} \ p(x) \qquad (by \ def) \\ \text{If we denote} \\ E(X^{r}) &= \mu_{r}^{'} \\ \text{Then} \\ \mu_{r}^{'} &= E[X^{r}] &= \sum_{x} x^{r} p(x) \\ \text{Put } r = 1, \ we \ get \\ \text{Mean } \mu_{r}^{'} &= \sum x \ p(x) \\ \text{Put } r = 2, \ we \ get \\ \mu_{2}^{'} &= E[X^{2}] &= \sum_{x} x^{2} p(x) \\ \therefore \ \mu_{2} &= \mu_{2}^{'} - \mu_{1}^{'2} \\ &= E[X^{2}] - \left\{ E(X) \right\}^{2} \\ \text{The } r^{th} \ moment \ about \ mean \\ \mu_{r}^{'} &= E[\{X - E(X)\}^{r}] \\ &= \sum_{x} (x - \overline{X})^{r} p(x), \qquad E(X) = \overline{X} \\ \text{Put } r = 2, \ we \ get \\ \text{Variance} &= \mu_{2} \\ &= \sum_{x} ((x - \overline{X})^{2} \ p(x) \end{split}$$

3.5 ADDITION THEOREM (EXPECTATION)

Theorem 1

If X and Y are two continuous random variable with pdf fx(x) and fy(y) then

E(X+Y) = E(X) + E(Y)

3.6 MULTIPLICATION THEOREM OF EXPECTATION Theorem 2

If X and Y are independent random variables,

Then $E(XY) = E(X) \cdot E(Y)$

Note :

If X1, X2,, Xn are 'n' independent random variables, then

E[X1, X2, ..., Xn] = E(X1), E(X2), ..., E(Xn)

Theorem 3

If 'X' is a random variable with pdf f(x) and 'a' is a constant, then

(i) E[a G(x)] = a E[G(x)]

(ii) E[G(x)+a] = E[G(x)+a]

Where G(X) is a function of 'X' which is also a random variable.

Theorem 4

If 'X' is a random variable with p.d.f. f(x) and 'a' and 'b' are constants, then E[ax + b] = a E(X) + b

Cor 1:

If we take a = 1 and b = -E(X) = -X, then we get

$$E(X-X) = E(X) - E(X) = 0$$

Note

$$E\left(\frac{1}{X}\right) \neq \frac{1}{E(X)}$$
$$E[\log (x)] \neq \log E(X)$$
$$E(X^{2}) \neq [E(X)]^{2}$$

3.7 EXPECTATION OF A LINEAR COMBINATION OF RANDOM VARIABLES

Let X1, X2,, Xn be any 'n' random variable and if a1, a2,, an are constants, then E[a1X1 + a2X2 ++ anXn] = a1E(X1) + a2E(X2) ++ anE(Xn)

Result

If X is a random variable, then

Var $(aX + b) = a^2 Var(X)$ 'a' and 'b' are constants.

Covariance :

If X and Y are random variables, then covariance between them is defined as $Cov(X, Y) = E\{[X - E(X)] [Y - E(Y)]\}$

 $Cov(X, Y) = E(XY) - E(X) \cdot E(Y)$ (A)

If X and Y are independent, then

E(XY) = E(X) E(Y)

Sub (B) in (A), we get Cov(X, Y) = 0

 \therefore If X and Y are independent, then

Cov(X, Y) = 0

Note

(i)
$$Cov(aX, bY) = ab Cov(X, Y)$$

(ii) Cov(X+a, Y+b) = Cov(X, Y)

(iii) Cov(aX+b, cY+d) = ac Cov(X, Y)

(iv)
$$Var(X1 + X2) = Var(X1) + Var(X2) + 2 Cov(X1, X2)$$

If X1, X2 are independent

Var (X1+X2) = Var(X1) + Var(X2)

EXPECTATION TABLE

Discrete R.V's	Continuous R.V's
1. $E(X) = \sum x p(x)$	1. $E(X) = \int_{-\infty}^{\infty} x f(x) dx$
2. $E(X^r) = \mu'_r = \sum_x x^r p(x)$	2. $E(X^r) = \mu'_r = \int_{-\infty}^{\infty} x^r f(x) dx$
3. Mean = $\mu'_r = \sum x p(x)$	3. Mean = $\mu'_r = \int_{-\infty}^{\infty} x f(x) dx$
4. $\mu'_2 = \sum x^2 p(x)$	4. $\mu'_2 = \int_{-\infty}^{\infty} x^2 f(x) dx$
5. Variance = $\mu'_2 - \mu'^2_1 = E(X^2) - \{E(X)\}^2$	5. Variance = $\mu'_2 - \mu'^2_1 = E(X^2) - \{E_1, E_2, E_3, E_4, E_3, E_4, E_4, E_4, E_5, E_4, E_5, E_5, E_6, E_6, E_6, E_6, E_6, E_6, E_6, E_6$

SOLVED PROBLEMS ON DISCRETE R.V'S

Example :1

When die is thrown, 'X' denotes the number that turns up. Find E(X), $E(X^2)$ and Var (X).

Solution

Let 'X' be the R.V. denoting the number that turns up in a die. 'X' takes values 1, 2, 3, 4, 5, 6 and with probability 1/6 for each

$\mathbf{X} = \mathbf{x}$	1	2	3	4	5	6
	1/6	1/6	1/6	1/6	1/6	1/6
p(x)	p (x ₁)	p(x ₂)	p(x ₃)	p(x4)	p(x5)	p(x ₆)

Now

$$E(X) = \sum_{i=1}^{6} x_i p(x_i)$$

$$= x_1 p(x_1) + x_2 p(x_2) + x_3 p(x_3) + x_4 p(x_4) + x_5 p(x_5) + x_6 p(x_6)$$

$$= 1 x (1/6) + 1 x (1/6) + 3 x (1/6) + 4 x (1/6) + 5 x (1/6) + 6 x (1/6)$$

$$= 21/6 = 7/2$$
(1)
$$E(X) = \sum_{i=1}^{6} x_i p(x_p)$$

$$= x_1^2 p(x_1) + x_2^2 p(x_2) + x_3^2 p(x_3) + x_4^2 p(x_4) + x_5^2 p(x_5) + x_6 p(x_6)$$

$$= 1(1/6) + 4(1/6) + 9(1/6) + 16(1/6) + 25(1/6) + 36(1/6)$$

$$= \frac{1 + 4 + 9 + 16 + 25 + 36}{6} = \frac{91}{6}$$
(2)
$$Variance (X) = Var (X) = E(X^2) - [E(X)]^2$$

$$= \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{91}{6} - \frac{49}{4} = \frac{35}{12}$$

Example :2

Find the value of (i) C (ii) mean of the following distribution given

$$f(x) = \begin{cases} C(x - x^2), & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

Solution

Given
$$f(x) = \begin{cases} C(x - x^2), & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$
 (1)

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

$$\int_{0}^{\infty} C(x - x^2) dx = 1$$

$$C\left[\frac{x^2}{2} - \frac{x^3}{3}\right]_{0}^{1} = 1$$

$$C\left[\frac{1}{2} - \frac{1}{3}\right] = 1$$

$$C\left[\frac{3 - 2}{6}\right] = 1$$

$$C\left[\frac{3 - 2}{6}\right] = 1$$

$$C = 6$$

$$C = 0$$

$$C = 0$$

$$C = 0$$

$$C = 0$$

Sub (2) in (1), $f(x) = 6(x - x^2), 0 \le x \le 1$ (3)

Mean

$$= E(x) = \int_{-\infty}^{\infty} x f(x) dx$$

= $\int_{0}^{1} x 6(x - x^{2}) dx$ [from (3)] [:: 0 < x < 1]
= $\int_{0}^{1} (6x^{2} - x^{3}) dx$

$$=\left[\frac{6x^3}{3}-\frac{6x^4}{4}\right]_0^1$$

 \therefore Mean = $\frac{1}{2}$

Mean	С
1/2	6

4 CONTINUOUS DISTRIBUTION FUNCTION Def:

If f(x) is a p.d.f. of a continuous random variable 'X', then the function

$$F_X(x) = F(x) = P(X \le x) = \int_{-\infty}^{\infty} f(x) dx, -\infty < x < \infty$$

is called the distribution function or cumulative distribution function of the random variable.

* PROPERTIES OF CDF OF A R.V. 'X'

(i)
$$0 \le F(x) \le 1, -\infty < x < \infty$$

(ii)
$$\underset{x \to -\infty}{\text{Lt}} F(x) = 0$$
, $\underset{x \to -\infty}{\text{Lt}} F(x) = 1$

(iii)
$$P(a \le X \le b) = \int_{a}^{b} f(x) dx = F(b) - F(a)$$

(iv)
$$F'(x) = \frac{dF(x)}{dx} = f(x) \ge 0$$

(v)
$$P(X = x_i) = F(x_i) - F(x_i - 1)$$

Example :1.4.1 Given the p.d.f. of a continuous random variable 'X' follows

$$f(x) = \begin{cases} 6x(1-x), & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}, \text{ find c.d.f. for 'X'}$$

Solution

$$\begin{aligned} & \text{Given } f(x) = \begin{cases} 6x(1-x), & 0 < x < 1\\ 0 & \text{otherwise} \end{cases} \\ & \text{The } c.d.f \text{ is } F(x) = \int_{-\infty}^{x} f(x) dx, -\infty < x < \infty \end{aligned}$$

$$\begin{aligned} & \text{(i) When } x < 0, \text{ then} \\ F(x) &= \int_{-\infty}^{x} f(x) dx \\ &= \int_{-\infty}^{x} 0 \, dx = 0 \\ & \text{(ii) When } 0 < x < 1, \text{ then} \end{aligned}$$

$$\begin{aligned} F(x) &= \int_{-\infty}^{x} f(x) dx \\ &= 0 + \int_{0}^{x} 6x(1-x) dx = 6 \int_{0}^{x} x(1-x) dx = 6 \left[\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{x} \\ &= 3x^{2} - 2x^{3} \\ & \text{(iii) When } x > 1, \text{ then} \end{aligned}$$

$$\begin{aligned} F(x) &= \int_{-\infty}^{x} f(x) dx \\ &= \int_{-\infty}^{0} 0 dx + \int_{0}^{1} 6x(1-x) dx + \int_{0}^{x} 0 \, dx \\ &= 6 \int_{0}^{1} (x-x^{2}) dx = 1 \\ & \text{Using } (1), (2) \& (3) \text{ we get} \\ F(x) &= \begin{cases} 0, & x < 0 \\ 3x^{2} - 2x^{3}, & 0 < x < 1 \\ 1, & x > 1 \end{cases} \end{aligned}$$

Example:1.4.2

(i) If $f(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$ defined as follows a density function?

(ii) If so determine the probability that the variate having this density will fall in the in 2).

Solution

Given $f(x) = \begin{cases} e^{-x}, & x \ge 0\\ 0, & x < 0 \end{cases}$

(a) In $(0, \infty)$, e^{-x} is +ve $\therefore f(x) \ge 0$ in $(0, \infty)$

(b)
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx$$
$$= \int_{-\infty}^{0} 0 dx + \int_{0}^{\infty} e^{-x} dx$$
$$= \left[-e^{-x} \right]_{0}^{\infty} = -e^{-\infty} + 1$$

$$= 1$$

Hence f(x) is a p.d.f
(ii) We know that
$$P(a \le X \le b) \qquad = \int_{a}^{b} f(x) dx$$
$$P(1 \le X \le 2) \qquad = \int_{a}^{2} f(x) dx$$

$$P(1 \le X \le 2) = \int_{1}^{a} f(x) dx = \int_{1}^{2} e^{-x} dx = [-e^{-x}]_{+1}^{2}$$
$$= \int_{1}^{2} e^{-x} dx = [-e^{-x}]_{+1}^{2}$$
$$= -e^{-2} + e^{-1} = -0.135 + 0.368 = 0.233$$

Example:1.4..3

A probability curve y = f(x) has a range from 0 to ∞ . If $f(x) = e^{-x}$, find the variance and the third moment about mean. Solution

Mean
$$= \int_{0}^{\infty} x f(x) dx$$

 $= \int_{0}^{\infty} x e^{-x} dx = [x[-e^{-x}]-[e^{-x}]]_{0}^{\infty}$
Mean = 1
Variance $\mu_{2} = \int_{0}^{\infty} (x - Mean)^{2} f(x) dx$
 $= \int_{0}^{\infty} (x - 1)^{2} e^{-x} dx$
 $\mu_{2} = 1$
Third moment about mean
 $\mu_{3} = \int_{a}^{b} (x - Mean)^{3} f(x) dx$
Here $a = 0, b = \infty$
 $\mu_{3} = \int_{a}^{b} (x - 1)^{3} e^{-x} dx$
 $= \{(x - 1)^{3}(-e^{-x}) - 3(x - 1)^{2}(e^{-x}) + 6(x - 1)(-e^{-x}) - 6(e^{-x})\}_{0}^{\infty}$
 $= -1 + 3 - 6 + 6 = 2$
 $\mu_{3} = 2$

5 MOMENT GENERATING FUNCTION

Def : The moment generating function (MGF) of a random variable 'X' (about origin) whose probability function f(x) is given by

 $M_X(t) = E[e^{tX}]$

$$=\begin{cases} \int_{x=-\infty}^{\infty} e^{tx} f(x) dx, \text{ for a continuous probably function} \\ \sum_{x=-\infty}^{\infty} e^{tx} p(x), \text{ for a discrete probably function} \end{cases}$$

Where t is real parameter and the integration or summation being extended to the entire X.

Example :1.5.1

Prove that the rth moment of the R.V. 'X' about origin is $M_X(t) = \int_{r=0}^{\infty} \frac{t^r}{r!} \mu'_r$

Proof

WKT M_X(t) = E(e^{tx})
= E
$$\left[1 + \frac{tX}{1!} + \frac{(tX)^2}{2!} + \frac{(tX)^3}{3!} + \dots + \frac{(tX)^r}{r!} + \dots\right]$$

= E[1]+tE(X)+ $\frac{t^2}{2!}$ E(X²)+....+ $\frac{t^r}{r!}$ E(X^r)+.....
M_X(t) = 1+t\mu'_1 + $\frac{t^2}{2!}\mu'_2 + \frac{t^3}{3!}\mu'_3 + \dots + \frac{t^r}{r!}\mu'_r + \dots$
ng $\mu'_r = E(X^r)$]

[usin

Thus r^{th} moment = coefficient of $\frac{t^r}{r!}$

Note

1. The above results gives MGF interms of moments.

2. Since M_X(t) generates moments, it is known as moment generating function.

Example:1.5.2

Find μ'_1 and μ'_2 from $M_X(t)$

Proof

WKT
$$M_{X}(t) = \sum_{r=0}^{\infty} \frac{t^{r}}{r!} \mu_{r}^{'}$$

 $M_{X}(t) = \mu_{0}^{'} + \frac{t}{1!} \mu_{1}^{'} + \frac{t^{2}}{2!} \mu_{2}^{'} + \dots + \frac{t^{r}}{r!} \mu_{r}^{'}$ (A)

Differenting (A) W.R.T 't', we get

$$M_{x}'(t) = \mu_{1}' + \frac{2t}{2!}\mu_{2}' + \frac{t^{3}}{3!}\mu_{3}' + \dots$$
(B)

Put t = 0 in (B), we get

 $M_{x'}(0) = \mu'_{1} = Mean$

Mean =
$$M'_1(0)$$
 (or) $\left[\frac{d}{dt}(M_X(t))\right]_{t=0}$

_

$$M_{X}''(t) = \mu_{2}' + t \mu_{3}' + \dots$$

Put $t = 0$ in (B)

$$M_{X}''(0) = \mu_{2}' \qquad (or) \qquad \left\lfloor \frac{d^{2}}{dt^{2}}(M_{X}(t)) \right\rfloor_{t=0}$$

In general $\mu_{r}' = \left[\frac{d^{r}}{dt^{r}}(M_{X}(t)) \right]_{t=0}$

Example :1.5.3

Obtain the MGF of X about the point X = a.

Proof

The moment generating function of X about the point X = a is $M_X(t) = E[e^{t(X-a)}]$

$$\begin{split} &= E \Biggl[1 + t(X - a) + \frac{t^2}{2!}(X - a)^2 + \dots + \frac{t^r}{r!}(X - a)^r + \dots \Biggr] \\ \Biggl[Formula \\ &= x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots \Biggr] \\ &= E(1) + E[t(X - a)] + E[\frac{t^2}{2!}(X - a)^2] + \dots + E[\frac{t^r}{r!}(X - a)^r] + \dots \\ &= 1 + tE(X - a) + \frac{t^2}{2!}E(X - a)^2 + \dots + \frac{t^r}{r!}E(X - a)^r + \dots \\ &= 1 + tE(X - a) + \frac{t^2}{2!}E(X - a)^2 + \dots + \frac{t^r}{r!}E(X - a)^r + \dots \\ &= 1 + t\mu_1' + \frac{t^2}{2!}\mu_2' + \dots + \frac{t^r}{r!}\mu_r' + \dots \\ &= 1 + t\mu_1' + \frac{t^2}{2!}\mu_2' + \dots + \frac{t^r}{r!}\mu_r' + \dots \\ \Biggl[M_X(t) \Biggr]_{x=a} &= 1 + t\mu_1' + \frac{t^2}{2!}\mu_2' + \dots + \frac{t^r}{r!}\mu_r' + \dots \\ Result: \\ M_{CX}(t) = E[e^{tex}] & (1) \\ M_X(t) = E[e^{tex}] & (2) \\ From (1) \& (2) we get \\ M_{CX}(t) = M_X(ct) \\ Frample : 154 \end{split}$$

Example :1.5.4

If M _{X1+X2++}	$X_1,$ $X_n(t)$	$X_2, \dots, \\ = E[e^{t(X)}]$	$X_n \text{ are } \\ {}_{1^{+X_2 + \dots + X_n}}]$	independent	variables,	then	pro
1 2		$= E[e^{tX_1}]$	e^{tX_2} e^{tX_n}]				
		$= \mathrm{E}(\mathrm{e}^{\mathrm{t}\mathrm{X}_{\mathrm{I}}})$). $E(e^{tX_2})I$	$E(e^{tX_n})$			
		$[:: X_1, X_2]$	X_2, \ldots, X_n at	re independent]			

$$= M_{X_1}(t).M_{X_2}(t)....M_{X_n}(t)$$

Example:1.5.5

Prove that if
$$\bigcup = \frac{X-a}{h}$$
, then $M_{\bigcup}(t) = e^{\frac{-at}{h}} M_X^{\left(\frac{t}{h}\right)}$, where a, h are constants.

Proof

By definition

$$M_{\cup}(t) = E\left[e^{tu}\right] \qquad \because \left[M_{X}(t) = E[e^{tx}]\right]$$
$$= E\left[e^{t\left(\frac{X-a}{h}\right)}\right]$$
$$= E\left[e^{t\left(\frac{x-a}{h}\right)}\right]$$
$$= E\left[e^{t\left(\frac{x-a}{h}\right)}\right]$$
$$= E\left[e^{t\left(\frac{x-a}{h}\right)}\right] = E\left[e^{t\left(\frac{x-a}{h}\right)}\right]$$
$$= E\left[e^{t\left(\frac{x}{h}\right)}\right] = E\left[e^{t\left(\frac{x}{h}\right)}\right] \qquad [by def]$$
$$= e^{\frac{-ta}{h}} \cdot M_{X}\left(\frac{t}{h}\right), \text{ where } \cup = \frac{X-a}{h} \text{ and } M_{X}(t) \text{ is the MGF about origin}$$

Example:1.5.6

Find the MGF for the distribution where

$$f(x) = \begin{cases} \frac{2}{3} & \text{at } x = 1\\ \frac{1}{3} & \text{at } x = 2\\ 0 & \text{otherwise} \end{cases}$$

(0

Solution

Given $f(1) = \frac{2}{3}$ $f(2) = \frac{1}{3}$ $f(3) = f(4) = \dots = 0$ MGF of a R.V. 'X' is given by

 $M_{\rm w}(t) = E[e^{tx}]$

$$= \sum_{x=0}^{\infty} e^{tx} f(x)$$

= $e^{0} f(0) + e^{t} f(1) + e^{2t} f(2) +$
= $0 + e^{t} f(2/3) + e^{2t} f(1/3) + 0$
= $2/3e^{t} + 1/3e^{2t}$
 \therefore MGF is $M_{X}(t) = \frac{e^{t}}{3}[2 + e^{t}]$

6 Discrete Distributions

The important discrete distribution of a random variable 'X' are

- 1. Binomial Distribution
- 2. Poisson Distribution
- 3. Geometric Distribution

6.1BINOMIAL DISTRIBUTION

Def : A random variable X is said to follow binomial distribution if its probability law is given by

 $P(x) = p(X = x \text{ successes}) = nCx px q^{n-x}$ Where x = 0, 1, 2, ..., n, p+q = 1

Note

Assumptions in Binomial distribution

- i) There are only two possible outcomes for each trail (success or failure).
- ii) The probability of a success is the same for each trail.
- iii) There are 'n' trails, where 'n' is a constant.
- iv) The 'n' trails are independent.

Example :1.6.1

Find the Moment Generating Function (MGF) of a binomial distribution about origin.

Solution

WKT
$$M_X(t) = \sum_{x=0}^n e^{tx} p(x)$$

Let 'X' be a random variable which follows binomial distribution then MGF about given by

$$E[e^{tX}] = M_X(t) = \sum_{x=0}^n e^{tx} p(x)$$

$$= \sum_{x=0}^n e^{tx} nC_x p^x q^{n-x} \qquad \left[\because p(x) = nC_x p^x q^{n-x}\right]$$

$$= \sum_{x=0}^n (e^{tx}) p^x nC_x q^{n-x}$$

$$= \sum_{x=0}^n (pe^t)^x nC_x q^{n-x}$$

$$\therefore M_X(t) = (q + pe^t)^n$$

Example: 1.6.2

Find the mean and variance of binomial distribution. Solution

$$\begin{split} M_{x}(t) &= (q + pe^{t})^{n} \\ \therefore M'_{x}(t) &= n(q + pe^{t})^{n-1}.pe^{t} \\ \text{Put } t = 0, \text{ we get} \\ M'_{x}(0) &= n(q + p)^{n-1}.p \\ \text{Mean} = E(X) = np \qquad [\because (q + p) = 1] \qquad [\text{Mean } M'_{x}(0)] \\ M_{x}^{*}(t) &= np[(q + pe^{t})^{n-1}.e^{t} + e^{t}(n - 1)(q + pe^{t})^{n-2}.pe^{t}] \\ \text{Put } t = 0, \text{ we get} \\ M_{x}^{*}(t) &= np[(q + p)^{n-1} + (n - 1)(q + p)^{n-2}.p] \\ &= np[1 + (n - 1)p] \\ &= np + n^{2}p^{2} - np^{2} \\ &= n^{2}p^{2} + np(1 - p) \\ M_{x}^{*}(0) &= n^{2}p^{2} + npq \qquad [\because 1 - p = q] \\ M_{x}^{*}(0) &= E(X^{2}) = n^{2}p^{2} + npq \\ \text{Var}(X) &= E(X^{2}) - [E(X)]^{2} = n^{2} / p^{2} + npq - n^{2} / p^{2} = npq \\ \text{Var}(X) = npq \\ \text{S.D} = \sqrt{npq} \end{split}$$

Example :1.6.3

Find the Moment Generating Function (MGF) of a binomial distribution about (np).

Solution

Wkt the MGF of a random variable X about any point 'a' is $M_{x}(t) \text{ (about } X = a) = E[e^{t(X-a)}]$ Here 'a' is mean of the binomial distribution $M_{X}(t) \text{ (about } X = np) = E[e^{t(X-np)}]$ $= E[e^{tX} \cdot e^{-tnp}]$ $= e^{-tnp} \cdot [-[e^{-tX}]]]$ $= e^{-tnp} \cdot (q+pe^{t})^{-n}$ $= (e^{-tp})^{n} \cdot (q+pe^{t})^{n}$ $\therefore \text{ MGF about mean } = (e^{-tp})^{n} \cdot (q+pe^{t})^{n}$

Example :1.6.4

Additive property of binomial distribution.

Solution

The sum of two binomial variants is not a binomial variate.

Let X and Y be two independent binomial variates with (n_1, p_1) and (n_2, p_2) respectively.

Then

$$M_{X}(t) = (q_{1} + p_{1}e^{t})^{n_{1}}, \qquad M_{Y}(t) = (q_{2} + p_{2}e^{t})^{n_{2}}$$

$$\therefore M_{X+Y}(t) = M_{X}(t).M_{Y}(t) \qquad [\because X \& Y \text{ are independent } R.V.'s]$$

$$= (q_{1} + p_{1}e^{t})^{n_{1}}. (q_{2} + p_{2}e^{t})^{n_{2}}$$

RHS cannot be expressed in the form $(q + pe^t)^n$. Hence by uniqueness the MGF X+Y is not a binomial variate. Hence in general, the sum of two binomial variate binomial variate.

Example :1.6.5

If
$$M_X(t) = (q+pe^t)^{n_1}$$
, $M_Y(t) = (q+pe^t)^{n_2}$, then
 $M_{X+Y}(t) = (q+pe^t)^{n_1+n_2}$

Problems on Binomial Distribution

Check whether the following data follow a binomial distribution or not. Mean = 3;
 4.

Solution

Given Mean np = 3 (1) Variance npr = 4 (2) $\frac{(2)}{(1)} \implies \frac{np}{npq} = \frac{3}{4}$ $\implies q = \frac{4}{3} = 1\frac{1}{3}$ which is > 1.

Since q > 1 which is not possible (0 < q < 1). The given data not follow binomial distribution

Example :1.6.5

The mean and SD of a binomial distribution are 5 and 2, determine the distribut **Solution**

Given Mean = np = 5 (1)

$$SD = \sqrt{npq} = 2$$
 (2)
 $\frac{(2)}{(1)} \implies \frac{np}{npq} = \frac{4}{5} \implies q = \frac{4}{5}$
 $\therefore p = 1 - \frac{4}{5} = \frac{1}{5} \implies p = \frac{1}{5}$
Sub (3) in (1) we get
 $n \ge 1/5 = 5$
 $n = 25$
 \therefore The binomial distribution is

$$P(X = x) = p(x) = nC_x p^x q^{n-x}$$

= 25C_x(1/5)^x(4/5)^{n-x}, x = 0, 1, 2,, 25

7 Passion Distribution

Def:

A random variable X is said to follow if its probability law is given by

P(X = x) = p(x) =
$$\frac{e^{-\lambda}\lambda^{x}}{x!}$$
, x = 0, 1, 2,, ∞

Poisson distribution is a limiting case of binomial distribution under the following conditions or assumptions.

- 1. The number of trails 'n' should e infinitely large i.e. $n \rightarrow \infty$.
- 2. The probability of successes 'p' for each trail is infinitely small.
- 3. $np = \lambda$, should be finite where λ is a constant.

* To find MGF

* To find MGF

$$M_{X}(t) = E(e^{tx})$$

$$= \sum_{x=0}^{\infty} e^{tx} p(x)$$

$$= \sum_{x=0}^{\infty} e^{tx} \left(\frac{\lambda^{x} e^{\lambda}}{x!}\right)$$

$$= \sum_{x=0}^{\infty} \frac{e^{-\lambda} (\lambda e^{t})^{x}}{x!}$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^{t})^{x}}{x!}$$

$$= e^{-\lambda} \left[1 + \lambda e^{t} + \frac{(\lambda e^{t})^{2}}{2!} + \dots\right]$$

$$= e^{-\lambda} e^{\lambda e^{t}} = e^{\lambda (e^{t}-1)}$$
Hence

$$M_{X}(t) = e^{\lambda (e^{t}-1)}$$

Hence

$$M_{X}(t) = e^{\lambda(e^{t} - t)}$$

* To find Mean and Variance

WKT
$$M_X(t) = e^{\lambda(e^t - 1)}$$

 $\therefore M_X'(t) = e^{\lambda(e^t - 1)} \cdot e^t$
 $M_X'(0) = e^{-\lambda} \cdot \lambda$
 $\mu'_1 = E(X) = \sum_{x=0}^{\infty} x \cdot p(x)$

$$= \sum_{x=0}^{\infty} x \cdot \frac{e^{-\lambda}\lambda^{x}}{x!} = \sum_{x=0}^{\infty} \frac{x \cdot e^{-\lambda}\lambda\lambda^{x-1}}{x!}$$
$$= 0 + e^{-\lambda} \cdot \lambda \sum_{x=1}^{\infty} \frac{x \cdot \lambda^{x-1}}{x!}$$
$$= \lambda e^{-\lambda} \cdot \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!}$$
$$= \lambda e^{-\lambda} \left[1 + \lambda + \frac{\lambda^{2}}{2!} + \dots \right]$$
$$= \lambda e^{-\lambda} \cdot e^{\lambda}$$

Mean = λ

$$\mu'_{2} = E[X^{2}] = \sum_{x=0}^{\infty} x^{2} \cdot p(x) = \sum_{x=0}^{\infty} x^{2} \cdot \frac{e^{-\lambda}\lambda^{x}}{x!}$$

$$= \sum_{x=0}^{\infty} \{x(x-1)+x\} \cdot \frac{e^{-\lambda}\lambda^{x}}{x!}$$

$$= \sum_{x=0}^{\infty} \frac{x(x-1)e^{-\lambda}\lambda^{x}}{x!} + \sum_{x=0}^{\infty} \frac{x \cdot e^{-\lambda}\lambda^{x}}{x!}$$

$$= e^{-\lambda}\lambda^{2} \sum_{x=0}^{\infty} \frac{\lambda^{x-2}}{(x-2)(x-3)\dots 1} + \lambda$$

$$= e^{-\lambda}\lambda^{2} \left[\sum_{x=0}^{\infty} \frac{\lambda^{x-2}}{(x-2)!} + \lambda\right]$$

$$= e^{-\lambda}\lambda^{2} \left[1 + \frac{\lambda}{1!} + \frac{\lambda^{2}}{2!} + \dots\right] + \lambda$$

$$= \lambda^{2} + \lambda$$
Variance $\mu_{2} = E(X^{2}) - [E(X)]^{2} = \lambda^{2} + \lambda - \lambda^{2} = \lambda$

Variance = λ

Hence Mean = Variance = λ

Note : * sum of independent Poisson Vairates is also Poisson variate.

PROBLEMS ON POISSON DISTRIBUTION

PROBLEMS ON POISSON DISTRIBUTION Example:1.7.1

If x is a Poisson variate such that $P(X=1) = \frac{3}{10}$ and $P(X=2) = \frac{1}{5}$, find the P(X=0) and

Solution

 $P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$

$$\therefore P(X=1) = e^{-\lambda}\lambda = \frac{3}{10}$$
 (Given)

$$= \lambda e^{-\lambda} = \frac{3}{10} \tag{1}$$

P(X=2)
$$= \frac{e^{-\lambda}\lambda^2}{2!} = \frac{1}{5}$$
 (Given)
 $\frac{e^{-\lambda}\lambda^2}{2!} = \frac{1}{5}$ (2)

$$(1) \Rightarrow e^{-\lambda}\lambda = \frac{3}{10}$$
(3)

$$(2) \Rightarrow e^{-\lambda}\lambda^2 = \frac{2}{5}$$
(3) 1 3
(4)

$$\frac{\langle \cdot \rangle}{\langle 4 \rangle} \Rightarrow \frac{1}{\lambda} = \frac{1}{4}$$
$$\lambda = \frac{4}{3}$$

:. P(X=0) =
$$\frac{e^{-\lambda}\lambda^0}{0!} = e^{-4/3}$$

P(X=3) = $\frac{e^{-\lambda}\lambda^3}{3!} = \frac{e^{-4/3}(4/3)^3}{3!}$

Example :1.7.2

If X is a Poisson variable P(X = 2) = 9 P(X = 4) + 90 P(X=6)Find (i) Mean if X (ii) Variance of X Solution

P(X=x) = $\frac{e^{-\lambda}\lambda^{x}}{x!}$, x = 0,1,2,.... Given P(X = 2) = 9 P(X = 4) + 90 P(X=6) $\frac{e^{-\lambda}\lambda^{2}}{2!} = 9 \frac{e^{-\lambda}\lambda^{4}}{4!} + 90 \frac{e^{-\lambda}\lambda^{6}}{6!}$ $\frac{1}{2} = \frac{9\lambda^{2}}{4!} + \frac{90\lambda^{4}}{6!}$ $\frac{1}{2} = \frac{3\lambda^{2}}{8} + \frac{\lambda^{4}}{8}$ $1 = \frac{3\lambda^{2}}{4} + \frac{\lambda^{4}}{4}$ $\lambda^{4} + 3\lambda^{2} - 4 = 0$ $\lambda^{2} = 1$ or $\lambda^{2} = -4$ $\lambda = \pm 1$ or $\lambda = \pm 2i$ \therefore Mean = $\lambda = 1$, Variance = $\lambda = 1$ \therefore Standard Deviation = 1

7.3 Derive probability mass function of Poisson distribution as a limiting case of Binomial distribution

Solution

We know that the Binomial distribution is $P(X=x) = nCx p^{x}q^{n-x}$

$$\begin{split} P(X=x) &= nC_x p^x q^{n \cdot x} \\ &= \frac{n!}{(n-x)! \, x!} p^x (1-p)^{n-x} \\ &= \frac{1.2.3.....(n-x)(n-x+1)....np^n}{1.2.3....(n-x) \, x!} \frac{(1-p)^n}{(1-p)^x} \\ &= \frac{1.2.3....(n-x)(n-x+1)....n}{1.2.3....(n-x) \, x!} \left(\frac{p}{1-p}\right)^x (1-p)^n \\ &= \frac{n(n-1)(n-2).....(n-x+1)}{x!} \frac{\lambda^x}{n^x} \frac{1}{(1-\frac{\lambda}{n})^x} \left(1-\frac{\lambda}{n}\right)^n \\ &= \frac{n(n-1)(n-2).....(n-x+1)}{x!} x \left(1-\frac{\lambda}{n}\right)^n \left(1-\frac{\lambda}{n}\right)^{-x} \\ &= \frac{1(1-\frac{1}{n})(1-\frac{2}{n}).....\left\{1-(\frac{x-1}{n})\right\}}{x!} \lambda^x \left(1-\frac{\lambda}{n}\right)^{n-x} \\ &= \frac{\lambda^x}{x!} 1\left(1-\frac{1}{n}\right)(1-\frac{2}{n}).....\left\{1-(\frac{x-1}{n})\right\} \left(1-\frac{\lambda}{n}\right)^{n-x} \end{split}$$

When $n \rightarrow \infty$

$$P(X=x) = \frac{\lambda^{x}}{x!} \lim_{n \to \infty} \left[1 - \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left\{1 - \left(\frac{x-1}{n}\right)\right\} \left(1 - \frac{\lambda}{n}\right)^{n-x} \right]$$
$$= \frac{\lambda^{x}}{x!} \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) \lim_{n \to \infty} \left(1 - \frac{2}{n}\right) \dots \lim_{n \to \infty} 1 - \left(\frac{x-1}{n}\right)$$

We know that

$$lt_{n\to\infty} \left(1 - \frac{\lambda}{n}\right)^{n-x} = e^{-\lambda}$$

and
$$lt_{n\to\infty} \left(1 - \frac{1}{n}\right) = lt_{n\to\infty} \left(1 - \frac{2}{n}\right) \dots = lt_{n\to\infty} \left(1 - \left(\frac{x-1}{n}\right)\right) = 1$$
$$\therefore P(X=x) = \frac{\lambda^x}{x!} e^{-\lambda}, x = 0, 1, 2, \dots, \infty$$

GEOMETRIC

DISTRIBUTION

Def: A discrete random variable 'X' is said to follow geometric distribution, if it assumes only non-negative values and its probability mass function is given by

$$\begin{split} P(X=x) &= p(x) = q^{x-1}; x = 1, 2, \dots, 0$$

* To find the Mean & Variance

8

$$\begin{split} M'_{x}(t) &= \frac{(1-qe^{t})pe^{t} - pe^{t}(-qe^{t})}{(1-qe^{t})^{2}} = \frac{pe^{t}}{(1-qe^{t})^{2}} \\ &\therefore E(X) = M'_{x}(0) = 1/p \\ &\therefore Mean = 1/p \\ Variance & \mu''_{x}(t) = \frac{d}{dt} \left[\frac{pe^{t}}{(1-qe^{t})^{2}} \right] \\ &= \frac{(1-qe^{t})^{2}pe^{t} - pe^{t}2(1-qe^{t})(-qe^{t})}{(1-qe^{t})^{4}} \\ &= \frac{(1-qe^{t})^{2}pe^{t} + 2pe^{t}qe^{t}(1-qe^{t})}{(1-qe^{t})^{4}} \\ M'_{x}(0) &= \frac{1+q}{p^{2}} \\ Var(X) &= E(X^{2}) - [E(X)]^{2} = \frac{(1+q)}{p^{2}} - \frac{1}{p^{2}} \Rightarrow \frac{q}{p^{2}} \\ Var(X) &= \frac{q}{p^{2}} \end{split}$$

Note:

Another form of geometric distribution $P[X=x] = q^{x}p$; x = 0, 1, 2, ...

$$M_{X}(t) = \frac{p}{(1 - qe^{t})}$$

Mean = q/p, Variance = q/p²

Example:1.8.2

If the MGF of X is $(5-4et)^{-1}$, find the distribution of X and P(X=5) Solution

Let the geometric distribution be $P(X = x) = q^{x}p, \qquad x = 0, 1, 2,$ The MGF of geometric distribution is given by

$$\frac{p}{1-qe^{t}}$$
 (1)

Here
$$M_X(t) = (5 - 4e^t)^{-1} \Rightarrow 5^{-1} \left[1 - \frac{4}{5}e^t \right]^t$$
 (2)

Company (1) & (2) we get
$$q = \frac{4}{5}; p = \frac{1}{5}$$

 $\therefore P(X = x) = pq^{x}, \qquad x = 0, 1, 2, 3, \dots$

$$= \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^{x}$$

$$P(X = 5) \qquad = \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^{5} = \frac{4^{5}}{5^{6}}$$

9 CONTINUOUS DISTRIBUTIONS

If 'X' is a continuous random variable then we have the following distribution

- 1. Uniform (Rectangular Distribution)
- 2. Exponential Distribution
- 3. Gamma Distribution
- 4. Normal Distribution

9.1 Uniform Distribution (Rectangular Distribution)

Def : A random variable X is set to follow uniform distribution if its

Def: A random variable X is set to follow uniform distribution if its

$$f(x) = \begin{cases} \frac{1}{b-a}, \ a < x < b\\ 0, & \text{otherwise} \end{cases}$$

* To find MGF
$$M_{X}(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

$$= \int_{a}^{b} e^{tx} \frac{1}{b-a} dx$$
$$= \frac{1}{b-a} \left[\frac{e^{tx}}{t} \right]_{b}^{a}$$
$$= \frac{1}{(b-a)t} \left[e^{bx} - e^{at} \right]$$

: The MGF of uniform distribution is

$$M_{X}(t) = \frac{e^{bt} - e^{at}}{(b-a)t}$$

* To find Mean and Variance

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_{a}^{b} b_{x} \frac{1}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} x dx = \frac{\left(\frac{x^{2}}{2}\right)_{a}^{b}}{b-a}$$
$$= \frac{b^{2}-a^{2}}{2(b-a)} = \frac{b+a}{2} = \frac{a+b}{2}$$

Mean
$$\mu'_1 = \frac{a+b}{2}$$

Putting $r = 2$ in (A), we get
 $\mu'_2 = \int_a^b x^2 f(x) dx = \int_a^b \frac{x^2}{b-a} dx$
 $= \frac{a^2 + ab + b^2}{3}$
 \therefore Variance $= \mu'_2 - \mu'_1^2$
 $= \frac{b^2 + ab + b^2}{3} - \left(\frac{b+a}{2}\right)^2 = \frac{(b-a)^2}{12}$
Variance $= \frac{(b-a)^2}{12}$

PROBLEMS ON UNIFORM DISTRIBUTION

Example 1.9.1

If X is uniformly distributed over $(-\alpha, \alpha)$, $\alpha < 0$, find α so that

(i)
$$P(X>1) = 1/3$$

(ii) P(|X| < 1) = P(|X| > 1)

Solution

If X is uniformly distributed in (- α , α), then its p.d.f. is

$$f(x) = \begin{cases} \frac{1}{2\alpha} & -\alpha < x < \alpha \\ 0 & \text{otherwise} \end{cases}$$
(i) $P(X>1) = 1/3$

$$\int_{1}^{\alpha} f(x) dx = 1/3$$

$$\int_{1}^{\alpha} \frac{1}{2\alpha} dx = 1/3$$

$$\frac{1}{2\alpha} (x)_{1}^{\alpha} = 1/3 \qquad \Rightarrow \frac{1}{2\alpha} (\alpha - 1) = 1/3$$

$$\alpha = 3$$
(ii) $P(|X| < 1) = P(|X| > 1) = 1 - P(|X| < 1)$

$$P(|X| < 1) + P(|X| < 1) = 1$$

$$2 P(|X| < 1) = 1$$

$$2 P(|X| < 1) = 1$$

$$2 P(-1 < X < 1) = 1$$

$$2 \int_{1}^{1} \frac{1}{2\alpha} dx = 1$$

$$\Rightarrow \alpha = 2$$

Note:

1. The distribution function F(x) is given by

$$F(x) = \begin{cases} 0 & -\alpha < x < \alpha \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & b < x < \infty \end{cases}$$

2. The p.d.f. of a uniform variate 'X' in (-a, a) is given by

$$F(x) = \begin{cases} \frac{1}{2a} & -a < x < a \\ 0 & \text{otherwise} \end{cases}$$

10 THE EXPONENTIAL DISTRIBUTION

Def :A continuous random variable 'X' is said to follow an exponential distribution

with parameter $\lambda > 0$ if its probability density function is given by

$$F(x) = \begin{cases} \lambda e^{-\lambda x} & x > a \\ 0 & \text{otherwise} \end{cases}$$

To find MGF Solution

$$M_{x}(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

= $\int_{0}^{\infty} e^{tx} \lambda e^{-\lambda x} dx = \lambda \int_{0}^{\infty} e^{-(\lambda - t)x} dx$
= $\lambda \left[\frac{e^{-(\lambda - t)x}}{\lambda - t} \right]_{0}^{\infty}$
= $\frac{\lambda}{-(\lambda - t)} \left[e^{-\infty} - e^{-0} \right] = \frac{\lambda}{\lambda - t}$
 \therefore MGF of $x = \frac{\lambda}{\lambda - t}, \lambda > t$

* To find Mean and Variance

We know that MGF is

$$M_{X}(t) = \frac{\lambda}{\lambda - t} = \frac{1}{1 - \frac{t}{\lambda}} = \left(1 - \frac{t}{\lambda}\right)^{-1}$$

$$= 1 + \frac{t}{\lambda} + \frac{t^{2}}{\lambda^{2}} + \dots + \frac{t^{r}}{\lambda^{r}}$$

$$= 1 + \frac{t}{\lambda} + \frac{t^{2}}{2!} \left(\frac{2!}{\lambda^{2}}\right) + \dots + \frac{t^{r}}{r!} \left(\frac{t!}{\lambda^{r}}\right)$$

$$M_{X}(t) = \sum_{r=0}^{\infty} \left(\frac{t}{\lambda}\right)^{r}$$

$$\therefore \text{ Mean } \mu_{1}' = \text{Coefficient of } \frac{t^{1}}{1!} = \frac{1}{\lambda}$$

$$\mu_{2}' = \text{Coefficient of } \frac{t^{2}}{2!} = \frac{2}{\lambda^{2}}$$

$$\text{Variance} = \mu_{2} = \mu_{2}' - \mu_{1}'^{2} = \frac{2}{\lambda^{2}} - \frac{1}{\lambda^{2}} = \frac{1}{\lambda^{2}}$$

$$\text{Variance} = \frac{1}{\lambda^{2}} \qquad \text{Mean} = \frac{1}{\lambda}$$

Example: 1.10.1 Let 'X' be a random variable with p.d.f

$$F(x) = \begin{cases} \frac{1}{3}e^{\frac{-x}{3}} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

1) P(X > 3) 2) MGF of 'X'

Solution

Find

WKT the exponential distribution is $F(x) = \lambda e^{-\lambda x}, x > 0$

Here
$$\lambda = \frac{1}{3}$$

 $P(x>3) = \int_{3}^{\infty} f(x) dx = \int_{3}^{\infty} \frac{1}{3} e^{-\frac{x}{3}} dx$
 $P(X>3) = e^{-1}$
MGF is $M_X(t) = \frac{\lambda}{\lambda - t}$

P(X > s+t / x > s) = P(X > t), for any s, t > 0.

11 GAMMA DISTRIBUTION

Definition

A Continuous random variable X taking non-negative values is said to follow gamma distribution, if its probability density function is given by

$$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} \, dx, \quad k \in (0,\infty)$$

$$f(x) = ----, \alpha > 0, 0 < x < \infty$$
$$= 0, \text{ elsewhere}$$

When α is the parameter of the distribution.

Additive property of Gamma Variates

If X1,X2, X3,.... Xk are independent gamma variates with parameters $\lambda 1, \lambda 2, \dots, \lambda$ krespectively then X1+X2 + X3+.... +Xk is also a gamma variates with parameter $\lambda 1 + \lambda 2 + \dots + \lambda k$

Example :1.11.1

Customer demand for milk in a certain locality ,per month , is Known to be a general Gamma RV.If the average demand is a liters and the most likely demand b liters (b<a) , what is the varience of the demand?

Solution :

Let X be represent the monthly Customer demand for milk. Average demand is the value of E(X).

Most likely demand is the value of the mode of X or the value of X for which its density function is maximum.

If f(x) is the its density function of X ,then

 $f(x) = - .x^{k-1} e^{-\lambda x} e^{-\lambda x} , x > 0$ $f(x) = - .[(k-1) x^{k-2} e^{-\lambda x} - e^{-\lambda x}]$ = 0, when x=0, x=- $f''(x) = - .[(k-1) x^{k-2} e^{-\lambda x} - e^{-\lambda x}]$ < 0, when x=-Therefour f(x) is maximum, when x=-

i.e ,Most likely demand = = b(1) and E(X) = -(2)

Now V(X) = = - = - = - = - = a= a (a-b) From (1) and (2)

TUTORIAL QUESTIONS

1.It is known that the probability of an item produced by a certain machine will be defective is 0.05. If the produced items are sent to the market in packets of 20, fine the no. of packets containing at least, exactly and atmost 2 defective items in a consignment of 1000 packets using (i) Binomial distribution (ii) Poisson approximation to binomial

distribution.

2. The daily consumption of milk in excess of 20,000 gallons is approximately exponentially distributed with . $3000 = \theta$ The city has a daily stock of 35,000 gallons. What is the probability that of two days selected at random, the stock is insufficient for both days.

3. The density function of a random variable X is given by f(x) = KX(2-X), $0 \le X \le 2$. Find K, mean, variance and rth moment.

4.A binomial variable X satisfies the relation 9P(X=4)=P(X=2) when n=6. Find the parameter p of the Binomial distribution.

5. Find the M.G.F for Poisson Distribution.

6. If X and Y are independent Poisson variates such that P(X=1)=P(X=2) and P(Y=2)=P(Y=3). Find V(X-2Y).

7.A discrete random variable has the following probability distribution

X:	0	1	2	3	4	5	6	7	8
P(X)	a	3a	5a	7a	9a	11a	13a	15a	17a

Find the value of a, P(X < 3) and c.d.f of X.

7. In a component manufacturing industry, there is a small probability of 1/500 for any component to be defective. The components are supplied in packets of 10. Use Poisson distribution to calculate the approximate number of packets containing (1). No defective. (2). Two defective components in a consignment of 10,000 packets.

WORKED OUT EXAMPLES

Example 1

Given the p.d.f. of a continuous random variable 'X' follows $f(x) = \begin{cases} 6x(1-x), & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}, \text{ find c.d.f. for 'X'}$ Solution Given $f(x) = \begin{cases} 6x(1-x), & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$ The c.d.f is $F(x) = \int_{0}^{x} f(x) dx, -\infty < x < \infty$ (i) When x < 0, then $F(x) = \int_{-\infty}^{x} f(x) dx$ $=\int_{0}^{x} 0 dx = 0$ (ii) When $0 \le x \le 1$, then $F(x) = \int_{-\infty}^{x} f(x) dx$ $= \int_{0}^{0} f(x) dx + \int_{0}^{x} f(x) dx$ $= 0 + \int_{0}^{x} 6x(1-x) dx = 6 \int_{0}^{x} x(1-x) dx = 6 \left[\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{x}$ $= 3x^2 - 2x^3$ (iii) When x > 1, then $F(x) = \int_{-\infty}^{x} f(x) dx$ = $\int_{-\infty}^{0} 0 dx + \int_{0}^{1} 6x(1-x) dx + \int_{0}^{x} 0 dx$ $= 6 \int_{-\infty}^{1} (x - x^2) dx = 1$ Using (1), (2) & (3) we get $F(x) = \begin{cases} 0, & x < 0 \\ 3x^2 - 2x^3, & 0 < x < 1 \\ 1, & x > 1 \end{cases}$

Example :2

A random variable X has the following probability function

Values of		-		2				0.
X								
Probability		2						
P(X)	a	a	a	a	1a	3a	5a	7a

(i) Determine the value of 'a'

(ii) Find P(X<3), P(X≥3), P(0<X<5)

(iii) Find the distribution function of X.

Solution

Table 1

Values of X	•							
p(x)	a	a	a	a	1 a	3a	5a	7a

(i) We know that if p(x) is the probability of mass function then

$$\sum_{i=0}^{8} p(x_i) = 1$$

$$p(0) + p(1) + p(2) + p(3) + p(4) + p(5) + p(6) + p(7) + p(8) = 1$$

$$a + 3a + 5a + 7a + 9a + 11a + 13a + 15a + 17a = 1$$

$$81 a = 1$$

$$a = 1/81$$

$$put a = 1/81 \text{ in table 1, e get table 2}$$

Table 2

	Х									
$= \mathbf{x}$								10		
	Р			to and						
(x)		/81	/81	/81	/81	/81	1/81	3/81	5/81	7/81

(ii) P(X < 3) = p(0) + p(1) + p(2)= 1/81 + 3/81 + 5/81 = 9/81(ii) $P(X \ge 3) = 1 - p(X < 3)$ = 1 - 9/81 = 72/81(iii) P(0 < x < 5) = p(1) + p(2) + p(3) + p(4) here 0 & 5 are not include = 3/81 + 5/81 + 7/81 + 9/813 + 5 + 7 + 8 + 9 = 24= $\frac{24}{81} = \frac{24}{81}$

X = x	$\mathbf{F}(\mathbf{X}) = \mathbf{P}(\mathbf{x} \le \mathbf{x})$
0	F(0) = p(0) = 1/81
1	$F(1) = P(X \le 1) = p(0) + p(1)$ = 1/81 + 3/81 = 4/81
2	$F(2) = P(X \le 2) = p(0) + p(1) + p(2)$ = 4/81 + 5/81 = 9/81
3	$F(3) = P(X \le 3) = p(0) + p(1) + p(2) + p(3)$ = 9/81 + 7/81 = 16/81
4	$F(4) = P(X \le 4) = p(0) + p(1) + \dots + p(4)$ = 16/81 + 9/81 = 25/81
5	$\begin{array}{ll} F(5) &= P(X \leq 5) = p(0) + p(1) + \dots + p(4) + p(5) \\ &= 2/81 + 11/81 = 36/81 \end{array}$
6	$F(6) = P(X \le 6) = p(0) + p(1) + \dots + p(6)$ = 36/81 + 13/81 = 49/81
7	$F(7) = P(X \le 7) = p(0) + p(1) + \dots + p(6) + p(7)$ = 49/81 + 15/81 = 64/81
8	$F(8) = P(X \le 8) = p(0) + p(1) + \dots + p(6) + p(7) + p(8)$ = 64/81 + 17/81 = 81/81 = 1

Example :3

The mean and SD of a binomial distribution are 5 and 2, determine the distribution. **Solution**

Given Mean = np = 5(1) $SD = \sqrt{npq} = 2$ (2) $\frac{(2)}{(1)} \implies \frac{np}{npq} = \frac{4}{5} \implies q = \frac{4}{5}$ $\therefore p = 1 - \frac{4}{5} = \frac{1}{5} \implies p = \frac{1}{5}$ Sub (3) in (1) we get $n \ge 1/5 = 5$ n = 25: The binomial distribution is $= nC_x p^x q^{n-x}$ P(X = x) = p(x) $= 25C_x(1/5)^x(4/5)^{n-x}$ $x = 0, 1, 2, \dots, 25$ Example :4 If X is a Poisson variable = 9 P(X = 4) + 90 P(X=6)P(X=2)Find (i) Mean if X (ii) Variance of X Solution $P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, 2, \dots$ P(X = 2) = 9 P(X = 4) + 90 P(X=6)Given $\frac{\mathrm{e}^{-\lambda}\lambda^2}{2!} = 9\frac{\mathrm{e}^{-\lambda}\lambda^4}{4!} + 90\frac{\mathrm{e}^{-\lambda}\lambda^6}{6!}$ $\frac{1}{2} = \frac{9\lambda^2}{41} + \frac{90\lambda^4}{61}$ $\frac{1}{2} = \frac{3\lambda^2}{8} + \frac{\lambda^4}{8}$ $1 = \frac{3\lambda^2}{4} + \frac{\lambda^4}{4}$ $\lambda^4 + 3\lambda^2 - 4 = 0$ $\lambda^2 = 1$ or $\lambda^2 = -4$ $\lambda = \pm 1$ or $\lambda = \pm 2i$

:. Mean = λ = 1, Variance = λ = 1

Standard Deviation = 1

Year/Semester: II / 04 CSE

2020 - 2021

Prepared by

Dr J FARITHA BANU

Professor / CSE

CS8493:OPERATING SYSTEM

Department of CSE

2020-2021

Jeppiaar Institute of Technology