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CHAPTER FIVE 

LINUX SYSTEMS AND MOBILE OPERATING 

SYSTEMS  

 
inux System design Principles, Kernel Modules, Process Management, 

Scheduling, Memory Management, Input-Output Management, File 

System, Inter-process Communication are described in this chapter. 

Also describes Mobile OS, iOS and Android Architecture and its SDK 

Framework, Media Layer, Services Layer, Core OS Layer and File System 

are described. 

Linux System 

Linux is a modern, free operating system based on UNIX standards. 

First developed as a small but self-contained kernel in 1991 by Linus 

Torvalds, with the major design goal of UNIX compatibility. Linux uses 

many tools developed as part of Berkeley’s BSD operating system, MIT’s 

X Window System, and the Free Software Foundation’s GNU project. 

The main system libraries were started by the GNU project, with 

improvements provided by the Linux community. Linux networking-

administration tools were derived from 4.3BSD code. Recent BSD 

derivatives such as FreeBSD have borrowed code from Linux in return.  

The Linux system is maintained by a loose network of developers 

collaborating over the Internet, with a small number of public ftp sites 

acting as de facto standard repositories. 

Design principles 

 Linux is a multiuser, multitasking system with a full set of UNIX-

compatible tools. 

 Its file system adheres to traditional UNIX semantics, and it fully 

implements the standard UNIX networking model.  

 Main design goals are speed, efficiency, and standardization.  
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 Linux is designed to be compliant with the relevant POSIX 

documents; at least two Linux distributions have achieved official 

POSIX certification.  

 The Linux programming interface adheres to the SVR4 UNIX 

semantics, rather than to BSD behavior 

 

The Linux design has the following components.  

 

Components of a Linux System:  

The Linux system is composed of three main bodies of code, the most 

important distinction is between the kernel and all other components.

Kernel. The kernel is responsible for maintaining all the important 

abstractions of the operating system, including such things as virtual 

memory and processes. 

Kernel code executes in kernel mode with full access to all the physical 

resources of the computer. All kernel code and data structures are kept in 

the same single address space. 

System libraries. The system libraries define a standard set of functions 

through which applications can interact with the kernel. These functions 

implement much of the operating-system functionality that does not 

need the full privileges of kernel code. The most important system 

library is the C library, known as libc.  

System utilities. The system utilities are programs that perform 

individual, specialized management tasks. Some system utilities are 

invoked just once to initialize and configure some aspect of the system. 

Others known as daemons in UNIX terminology run permanently, 

handling such tasks as responding to incoming network connections, 

accepting logon requests from terminals, and updating log files. 
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Fig 5.1 Components of a Linux System 

All the kernel code executes in the processor’s privileged mode with full 

access to all the physical resources of the computer.

Linux refers to this privileged mode as kernel mode. Under Linux, no 

user code is built into the kernel. Any operating-system-support code 

that does not need to run in kernel mode is placed into the system 

libraries and runs in user mode. Unlike kernel mode, user mode has 

access only to a controlled subset of the system’s resources. 

One of the most important user utilities is the shell, the standard 

command-line interface on UNIX systems. Linux supports many shells; 

the most common is the bourne-again shell (bash). 

Kernel Modules  

Sections of kernel code that can be compiled, loaded, and unloaded 

independent of the rest of the kernel. A kernel module may typically 

implement a device driver, a file system, or a networking protocol. The 

module interface allows third parties to write and distribute, on their own 

terms, device drivers or file systems that could not be distributed under the 

GPL.  

Kernel modules allow a Linux system to be set up with a standard, minimal 

kernel, without any extra device drivers built in.  

Three components to Linux module support:  
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Module management, Driver registration, Conflict resolution. 

Module Management:  

Supports loading modules into memory and letting them talk to the rest of 

the kernel. Module loading is split into two separate sections:  

 Managing sections of module code in kernel memory  

 Handling symbols that modules are allowed to reference  

The module requestor manages loading requested, but currently unloaded, 

modules; it also regularly queries the kernel to see whether a dynamically 

loaded module is still in use and will unload it when it is no longer actively 

needed. 

Driver registration:  

Allows modules to tell the rest of the kernel that a new driver has become 

available. The kernel maintains dynamic tables of all known drivers, 

provides a set of routines to allow drivers to be added to or removed from 

these tables at any time.  

Registration tables include the following items:  

 Device drivers  

 File systems 

 Network protocols 

 Binary format 

Conflict resolution: 

A mechanism that allows different device drivers to reserve hardware 

resources and to protect those resources from accidental use by another 

driver.  

The conflict resolution module aims to:  

 Prevent modules from clashing over access to hardware resources 
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 Prevent auto probes from interfering with existing device drivers 

 Resolve conflicts with multiple drivers trying to access the same 

hardware  

Process Management   

A process is the basic context in which all user-requested activity is 

serviced within the operating system.  

UNIX process management separates the creation of processes and the 

running of a new program into two distinct operations. 

 The fork() system call creates a new process. 

 A new program is run after a call to exec(). 

Under UNIX, a process encompasses all the information that the operating 

system must maintain to track the context of a single execution of a single 

program.  

Under Linux, process properties fall into three groups:  

 Process Identity 

 Environment  

 Context. 

Process Identity  

A process identity consists mainly of the following items: 

Process ID (PID): Each process has a unique identifier. The PID is used to 

specify the process to the operating system when an application makes a 

system call to signal, modify, or wait for the process. Additional identifiers 

associate the process with a process group (typically, a tree of processes 

forked by a single user command) and login session. 
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Credentials: Each process must have an associated user ID and one or more 

group IDs that determine the rights of a process to access system resources 

and files. 

Personality: Process personalities are special feature in Linux - each 

process has an associated personality identifier that can slightly modify the 

semantics of certain system calls. Personalities are primarily used by 

emulation libraries to request that system calls be compatible with certain 

varieties of UNIX. 

Process Environment  

A process’s environment is inherited from its parent. It is composed of 

two null-terminated vectors: 

 The argument vector  

 The environment vector.  

The argument vector simply lists the command-line arguments used to 

invoke the running program;  

The environment vector is a list of “NAME=VALUE” pairs that associates 

named environment variables with arbitrary textual values. 

Process Context 

Process context is the state of the running program at any one time, like 

(ready, running , execution, terminated , waiting). It changes constantly.  

Process context includes the following parts 

Scheduling context: Scheduler needs to suspend and restart the process. 

This information includes saved copies of all the process’s registers. The 

scheduling context also includes information about scheduling priority and 

about any outstanding signals waiting to be delivered to the process. 
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Accounting: The kernel maintains accounting information about the 

resources currently being consumed by each process and the total resources 

consumed by the process in its entire lifetime so far. 

File table: The file table is an array of pointers to kernel file structures 

representing open files. When making file-I/O system calls, processes refer 

to files by an integer, known as a file descriptor (fd), that the kernel uses to 

index into this table.  

File-system context: Whereas the file table lists the existing open files, the 

file-system context applies to requests to open new files. The file-system 

context includes the process’s root directory, current working directory, and 

namespace.  

Signal-handler table: UNIX systems can deliver asynchronous signals to 

a process in response to various external events. The signal-handler table 

defines the action to take in response to a specific signal. Valid actions 

include ignoring the signal, terminating the process, and invoking a routine 

in the process’s address space.  

Virtual memory context: The virtual memory context describes the full 

contents of a process’s private address space. Linux provides the fork() 

system call, which duplicates a process without loading a new executable 

image.  

Linux also provides the ability to create threads via the clone() system call. 

Linux does not distinguish between processes and threads. In fact, Linux 

generally uses the term task, rather than process or thread when referring to 

a flow of control within a program.  

The clone() system call behaves identically to fork(), except that it accepts 

as arguments a set of flags that dictate what resources are shared between 

the parent and child (whereas a process created with fork() shares no 

resources with its parent). 
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Process Scheduling    

Scheduling is the job of allocating CPU time to different tasks within an 

operating system.  Linux, like all UNIX systems, supports preemptive 

multitasking.  

In such a system, the process scheduler decides which process runs and 

when. Linux has two separate process-scheduling algorithms.  

 Time-sharing algorithm 

 Completely Fair Scheduler (CFS) 

Time-sharing algorithm: is designed for fair, preemptive scheduling 

among multiple processes (like round robin). 

Completely Fair Scheduler (CFS): is designed for real-time tasks, where 

absolute priorities are more important than fairness (like priority). This 

Linux scheduler is a preemptive, priority-based algorithm with two separate 

priority ranges: a real-time range from 0 to 99 and a nice value ranging from 

20 to 19.  

Smaller nice values indicate higher priorities. Thus, by increasing the nice 

value, you are decreasing your priority and being “nice” to the rest of the 

system. CFS introduced a new scheduling algorithm called fair scheduling 

that eliminates time slices in the traditional sense. 

Instead of time slices, all processes are allotted a proportion of the 

processor’s time. CFS calculates how long a process should run as a 

function of the total number of runnable processes.  

To start, CFS says that if there are N runnable processes, then each should 

be afforded 1/N of the processor’s time. CFS then adjusts this allotment by 

weighting each process’s allotment by its nice value.  

Processes with the default nice value have a weight of 1 their priority is 

unchanged. Processes with a smaller nice value (higher priority) receive a 

higher weight, while processes with a larger nice value (lower priority) 

receive a lower weight. CFS then runs each process for a “time slice” 
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proportional to the process’s weight divided by the total weight of all 

runnable processes. 

Memory Management     

Linux’s physical memory-management system deals with allocating and 

freeing pages, groups of pages, and small blocks of memory. It has 

additional mechanisms for handling virtual memory, memory mapped into 

the address space of running processes. 

Memory management under Linux has two components.  

 Management of Physical Memory: Deals with allocating and 

freeing physical memory, pages, groups of pages, and small blocks 

of RAM.  

 Management of Virtual Memory: Virtual memory, which is 

memory-mapped into the address space of running processes.  

Management of Physical Memory  

Due to specific hardware constraints, Linux separates physical memory into 

four different zones, or regions:  

 ZONE DMA (the first 16 MB of physical memory comprise 

ZONE DMA) 

 ZONE DMA32(certain devices can only access the first 4 GB of 

physical memory, despite supporting 64-bit addresses) 

 ZONE NORMAL (comprises everything else, the normal, 

regularly mapped pages.) 

 ZONE HIGHMEM (for “high memory”) refers to physical 

memory that is not mapped into the kernel address space) 

The region is broken up recursively until a piece of the desired size is 

available. 
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Fig 5.2 Relationship of zones and physical addresses in Intel x86-32  

All memory allocations in the Linux kernel are made either statically by 

drivers that reserve a contiguous area of memory during system boot time, 

or dynamically, by the page allocator. 

The most important are the virtual memory system, the kmalloc() variable-

length allocator; the slab allocator, used for allocating memory for kernel 

data structures; and the page cache, used for caching pages belonging to 

files. 

Analogous to the C language’s malloc() function, this kmalloc() service 

allocates entire physical pages on demand but then splits them into smaller 

pieces. The kernel maintains lists of pages in use by the kmalloc() service.  

Memory regions claimed by the kmalloc() system are allocated 

permanently until they are freed explicitly with a corresponding call to 

kfree(). Another strategy adopted by Linux for allocating kernel memory is 

known as slab allocation.  

A slab is used for allocating memory for kernel data structures and is made 

up of one or more physically contiguous pages. A cache consists of one or 

more slabs.  

There is a single cache for each unique kernel data structure — for example, 

a cache for the data structure representing process descriptors, a cache for 

file objects, a cache for inodes, and so forth. 
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Fig 5.3 Slab Allocation   

The slab-allocation algorithm uses caches to store kernel objects. When a 

cache is created, a number of objects are allocated to the cache. The number 

of objects in the cache depends on the size of the associated slab. In Linux, 

a slab may be in one of three possible states:  

Full: All objects in the slab are marked as used. 

Empty: All objects in the slab are marked as free. 

Partial: The slab consists of both used and free objects. 

The slab allocator first attempts to satisfy the request with a free object in a 

partial slab.  If none exist, a free object is assigned from an empty slab.  

If no empty slabs are available, a new slab is allocated from contiguous 

physical pages and assigned to a cache; memory for the object is allocated 

from this slab. 

Buddy heap allocation: 

The allocator uses a buddy system to keep track of available physical pages. 

In this scheme, adjacent units of allocatable memory are paired together 
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(hence its name). Each allocatable memory region has an adjacent partner 

(or buddy).  

Whenever two allocated partner regions are freed up, they are combined to 

form a larger region a buddy heap. That larger region also has a partner, 

with which it can combine to form a still larger free region.  

Conversely, if a small memory request cannot be satisfied by allocation of 

an existing small free region, then a larger free region will be subdivided 

into two partners to satisfy the request. Separate linked lists are used to 

record the free memory regions of each allowable size.  

Under Linux, the smallest size allocatable under this mechanism is a single 

physical page. Figure 5.3 shows an example of buddy-heap allocation.  

                             

Fig 5.4 Splitting of Memory in Buddy System   

Management of Virtual Memory  

The Virtual Memory system maintains the address space visible to each 

process: It creates pages of virtual memory on demand, and manages the 

loading of those pages from disk or their swapping back out to disk as 

required. The Virtual Memory manager maintains two separate views of a 

process’s address space: 
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Logical View: A logical view describing instructions concerning the layout 

of the address space. The address space consists of a set of nonoverlapping 

regions, each representing a continuous, page-aligned subset of the address 

space.  

Physical View: A physical view of each address space which is stored in 

the hardware page tables for the process. 

Virtual memory regions are characterized by: 

 The backing store, which describes from where the pages for a 

region come; regions are usually backed by a file or by nothing 

(demand-zero memory) 

 The region’s reaction to writes (page sharing or copy-on-write).  

The kernel creates a new virtual address space  

1. When a process runs a new program with the exec system call  

2. Upon creation of a new process by the fork system call. 

On executing a new program, the process is given a new, completely empty 

virtual-address space; the program-loading routines populate the address 

space with virtual-memory regions.  

Creating a new process with fork involves creating a complete copy of the 

existing process’s virtual address space.  

 The kernel copies the parent process’s Virtual Memory Address 

descriptors, then creates a new set of page tables for the child.  

 The parent’s page tables are copied directly into the child’s, with 

the reference count of each page covered being incremented.  

 After the fork, the parent and child share the same physical pages 

of memory in their address spaces. 
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Input–Output Management      

The Linux device-oriented file system accesses disk storage through two 

caches:  

 Data is cached in the page cache, which is unified with the virtual 

memory system. 

 Metadata is cached in the buffer cache, a separate cache indexed by 

the physical disk block. 

Linux splits all devices into three classes:  

 block devices allow random access to completely independent, 

fixed size blocks of data  

 character devices include most other devices; they don’t need to 

support the functionality of regular files.  

 network devices are interfaced via the kernel’s networking 

subsystem. 

Block Devices: Provide the main interface to all disk devices in a system. 

The block buffer cache serves two main purposes:  

 It acts as a pool of buffers for active I/O 

 It serves as a cache for completed I/O  

The request manager manages the reading and writing of buffer contents to 

and from a block device driver. 

Character Devices: include most other devices, such as mice and 

keyboards. The fundamental difference between block and character 

devices is random access block devices are accessed randomly, while 

character devices are accessed serially. For example, seeking to a certain 

position in a file might be supported for a DVD but makes no sense for a 

pointing device such as a mouse. 

Network devices: are dealt with differently from block and character 

devices. Users cannot directly transfer data to network devices. Instead, 
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they must communicate indirectly by opening a connection to the kernel’s 

networking subsystem 

File System      

Linux’s file system appears as a hierarchical directory tree obeying UNIX 

semantics. Internally, the kernel hides implementation details and manages 

the multiple different file systems via an abstraction layer, that is, the virtual 

file system (VFS). 

The Linux VFS is designed around object-oriented principles and is 

composed of two components:  

 A set of definitions that define what a file object is allowed to look 

like  

a. the inode-object and the file-object structures represent 

individual files  

b.  the file system object represents an entire file system  

 A layer of software to manipulate those objects.  

The Linux ext3 File System 

Ext2fs uses a mechanism similar to that of BSD Fast File System (ffs) for 

locating data blocks belonging to a specific file. The main differences 

between ext2fs and ffs concern their disk allocation policies.  

 In ffs, the disk is allocated to files in blocks of 8Kb, with blocks 

being subdivided into fragments of 1Kb to store small files or 

partially filled blocks at the end of a file.  

 Ext2fs does not use fragments; it performs its allocations in smaller 

units. The default block size on ext2fs is 1Kb, although 2Kb and 

4Kb blocks are also supported.  

Ext2fs uses allocation policies designed to place logically adjacent blocks 

of a file into physically adjacent blocks on disk, so that it can submit an I/O 

request for several disk blocks as a single operation 
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Fig 5.5 ext3 block allocation policies 

Inter Process Communication     

Linux provides a rich environment for processes to communicate with each 

other. Communication may be just a matter of letting another process know 

that some event has occurred, or it may involve transferring data from one 

process to another. 

Like UNIX, Linux informs processes that an event has occurred via signals. 

There is a limited number of signals, and they cannot carry information: 

Only the fact that a signal occurred is available to a process.  

The Linux kernel does not use signals to communicate with processes with 

are running in kernel mode, rather, communication within the kernel is 

accomplished via scheduling states and wait queue structures. 

Passing Data between Processes: 

The pipe mechanism allows a child process to inherit a communication 

channel to its parent. Data written to one end of the pipe can be read at the 

other. Shared memory offers an extremely fast way of communicating.  
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Any data written by one process to a shared memory region can be read 

immediately by any other process that has mapped that region into its 

address space. To obtain synchronization, however, shared memory must 

be used in conjunction with another interprocess-communication 

mechanism. 

Mobile OS    

Some important features of Mobile Operating System are 

 Alternate Keyboards.  

 Infrared Transmission. 

 Touch Control.  

 Automation. 

 Wireless App Downloads. 

 Storage and Battery Swap.  

 Custom Home Screens. 

 Messaging: SMS, MMS, C2DM (could to device messaging), 

GCM (Google could messaging) 

 Multilanguage support. 

 Multi touch. 

 Video calling. 

 Screen capture. 

iOS Architecture 

The iOS is the operating system created by Apple Inc. for mobile devices. 

The iOS is used in many of the mobile devices for apple such as iPhone, 

iPod, iPad etc. The iOS is used a lot and only lags behind Android in terms 

of popularity. 
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The iOS architecture is layered. It contains an intermediate layer between 

the applications and the hardware, so they do not communicate directly. 

The lower layers in iOS provide the basic services and the higher layers 

provide the user interface and sophisticated graphics. 

The layered architecture of iOS is given as follows: 

                           

Fig 5.6 iOS Architecture 

Layers in iOS Architecture 

The different layers as shown in the above diagram are given as follows: 

Core OS: All the iOS technologies are build on the low level features 

provided by the Core OS layer. These technologies include Core Bluetooth 

Framework, External Accessory Framework, Accelerate Framework, 

Security Services Framework, Local Authorization Framework etc. 

Core Services: There are many frameworks available in the cure services 

layer. Details about some of these are given as follows: 

 Cloudkit Framework: The data can be moved between the app the 

iCloud using the Cloudkit Framework. 

 Core Foundation Framework: This provides the data 

management and service features for the iOS apps. 

 Core Data Framework: The data model of the model view 

controller app is handled using the Core Data Framework. 
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 Address Book Framework: The address book framework 

provides access to the contacts database of the user. 

 Core Motion Framework: All the motion-based data on the 

device is accessed using core motion framework. 

 Healthkit Framework: The health-related information of the user 

can be handled by this new framework. 

 Core Location Framework: This framework provides the location 

and heading information to the various apps. 

 Media Services: The media layer enables all the graphics, audio 

and video technology of the system. The different frameworks are: 

 UIKit Graphics: This provides support for designing images and 

animating the view content. 

 Core Graphics Framework: This provides support for 2-D vector 

and image based rendering and is the native drawing engine for iOS 

apps. 

 Core Animation: The Core Animation technology optimizes the 

animation experience of the apps. 

 Media Player Framework: This framework provides support for 

playing playlists and enables the user to use their iTunes library. 

 AV Kit: This provides various easy to use interfaces for video 

presentation. 

Cocoa Touch: The cocoa touch layer provides the following frameworks: 

 EventKit Framework: This shows the standard system interfaces 

using view controllers for viewing and changing calendar related 

events. 

 GameKit Framework: This provides support for users to share 

their game related data online using Game center. 

 MapKit Framework: This provides a scrollable map which can 

be included into the app user interface. 
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Android Architecture      

Android operating system is a stack of software components which is 

roughly divided into five sections and four main layers as shown below in 

the architecture diagram. 

              

Fig 5.7 Android Architecture 

Linux kernel: At the bottom of the layers is Linux kernel.  This provides a 

level of abstraction between the device hardware and it contains all the 

essential hardware drivers like camera, keypad, display etc. Also, the kernel 

handles networking along with interfacing to peripheral hardware. 

Libraries: On top of Linux kernel there is a set of libraries including open-

source Web browser engine WebKit, well known library libc, SQLite 

database which is a useful repository for storage and sharing of application 

data, libraries to play and record audio and video, SSL libraries responsible 

for Internet security etc. 

Android Libraries: This category encompasses those Java-based libraries 

that are specific to Android development. Examples of libraries in this 

category include the application framework libraries in addition to those 

that facilitate user interface building, graphics drawing and database access. 
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A summary of some key core Android libraries available to the Android 

developer is as follows: 

 android.app: Provides access to the application model and is the 

cornerstone of all Android applications. 

 android.content: Facilitates content access, publishing and 

messaging between applications and application components. 

 android.database : Used to access data published by content 

providers and includes SQLite database management classes. 

 android.opengl: A Java interface to the OpenGL ES 3D graphics 

rendering API. 

 android.os: Provides applications with access to standard 

operating system services including messages, system services and 

inter-process communication. 

 android.text: Used to render and manipulate text on a device 

display. 

 android.view: The fundamental building blocks of application user 

interfaces. 

 android.widget: A rich collection of pre-built user interface 

components such as buttons, labels, list views, layout managers, 

radio buttons etc. 

 android.webkit: A set of classes intended to allow web-browsing 

capabilities to be built into applications. 

Having covered the Java-based core libraries in the Android runtime, it is 

now time to turn our attention to the C/C++ based libraries contained in this 

layer of the Android software stack. 
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Android Runtime 

This is the third section of the architecture and available on the second layer 

from the bottom. This section provides a key component called Dalvik 

Virtual Machine which is a kind of Java Virtual Machine specially designed 

and optimized for Android. 

The Dalvik VM makes use of Linux core features like memory management 

and multi-threading, which is fundamental in the Java language. The Dalvik 

VM enables every Android application to run in its own process, with its 

own instance of the Dalvik virtual machine. 

The Android runtime also provides a set of core libraries which enable 

Android application developers to write Android applications using 

standard Java programming language. 

Application Framework 

The Application Framework layer provides many higher-level services to 

applications in the form of Java classes. Application developers are allowed 

to make use of these services in their applications. 

The Android framework includes the following key services  

 Activity Manager: Controls all aspects of the application lifecycle 

and activity stack. 

 Content Providers: Allows applications to publish and share data 

with other applications. 

 Resource Manager: Provides access to non-code embedded 

resources such as strings, color settings and user interface layouts. 

 Notifications Manager: Allows applications to display alerts and 

notifications to the user. 

 View System: An extensible set of views used to create application 

user interfaces. 
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Applications 

All the Android application are available at the top layer. If we write our 

application that is to be installed on this layer only. Examples of such 

applications are Contacts Books, Browser, Games etc. 
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