
1

CHAPTER FIVE

LINUX SYSTEMS AND MOBILE OPERATING

SYSTEMS

inux System design Principles, Kernel Modules, Process Management,

Scheduling, Memory Management, Input-Output Management, File

System, Inter-process Communication are described in this chapter.

Also describes Mobile OS, iOS and Android Architecture and its SDK

Framework, Media Layer, Services Layer, Core OS Layer and File System

are described.

Linux System

Linux is a modern, free operating system based on UNIX standards.

First developed as a small but self-contained kernel in 1991 by Linus

Torvalds, with the major design goal of UNIX compatibility. Linux uses

many tools developed as part of Berkeley’s BSD operating system, MIT’s

X Window System, and the Free Software Foundation’s GNU project.

The main system libraries were started by the GNU project, with

improvements provided by the Linux community. Linux networking-

administration tools were derived from 4.3BSD code. Recent BSD

derivatives such as FreeBSD have borrowed code from Linux in return.

The Linux system is maintained by a loose network of developers

collaborating over the Internet, with a small number of public ftp sites

acting as de facto standard repositories.

Design principles

 Linux is a multiuser, multitasking system with a full set of UNIX-

compatible tools.

 Its file system adheres to traditional UNIX semantics, and it fully

implements the standard UNIX networking model.

 Main design goals are speed, efficiency, and standardization.

L

2

 Linux is designed to be compliant with the relevant POSIX

documents; at least two Linux distributions have achieved official

POSIX certification.

 The Linux programming interface adheres to the SVR4 UNIX

semantics, rather than to BSD behavior

The Linux design has the following components.

Components of a Linux System:

The Linux system is composed of three main bodies of code, the most

important distinction is between the kernel and all other components.

Kernel. The kernel is responsible for maintaining all the important

abstractions of the operating system, including such things as virtual

memory and processes.

Kernel code executes in kernel mode with full access to all the physical

resources of the computer. All kernel code and data structures are kept in

the same single address space.

System libraries. The system libraries define a standard set of functions

through which applications can interact with the kernel. These functions

implement much of the operating-system functionality that does not

need the full privileges of kernel code. The most important system

library is the C library, known as libc.

System utilities. The system utilities are programs that perform

individual, specialized management tasks. Some system utilities are

invoked just once to initialize and configure some aspect of the system.

Others known as daemons in UNIX terminology run permanently,

handling such tasks as responding to incoming network connections,

accepting logon requests from terminals, and updating log files.

3

Fig 5.1 Components of a Linux System

All the kernel code executes in the processor’s privileged mode with full

access to all the physical resources of the computer.

Linux refers to this privileged mode as kernel mode. Under Linux, no

user code is built into the kernel. Any operating-system-support code

that does not need to run in kernel mode is placed into the system

libraries and runs in user mode. Unlike kernel mode, user mode has

access only to a controlled subset of the system’s resources.

One of the most important user utilities is the shell, the standard

command-line interface on UNIX systems. Linux supports many shells;

the most common is the bourne-again shell (bash).

Kernel Modules

Sections of kernel code that can be compiled, loaded, and unloaded

independent of the rest of the kernel. A kernel module may typically

implement a device driver, a file system, or a networking protocol. The

module interface allows third parties to write and distribute, on their own

terms, device drivers or file systems that could not be distributed under the

GPL.

Kernel modules allow a Linux system to be set up with a standard, minimal

kernel, without any extra device drivers built in.

Three components to Linux module support:

4

Module management, Driver registration, Conflict resolution.

Module Management:

Supports loading modules into memory and letting them talk to the rest of

the kernel. Module loading is split into two separate sections:

 Managing sections of module code in kernel memory

 Handling symbols that modules are allowed to reference

The module requestor manages loading requested, but currently unloaded,

modules; it also regularly queries the kernel to see whether a dynamically

loaded module is still in use and will unload it when it is no longer actively

needed.

Driver registration:

Allows modules to tell the rest of the kernel that a new driver has become

available. The kernel maintains dynamic tables of all known drivers,

provides a set of routines to allow drivers to be added to or removed from

these tables at any time.

Registration tables include the following items:

 Device drivers

 File systems

 Network protocols

 Binary format

Conflict resolution:

A mechanism that allows different device drivers to reserve hardware

resources and to protect those resources from accidental use by another

driver.

The conflict resolution module aims to:

 Prevent modules from clashing over access to hardware resources

5

 Prevent auto probes from interfering with existing device drivers

 Resolve conflicts with multiple drivers trying to access the same

hardware

Process Management

A process is the basic context in which all user-requested activity is

serviced within the operating system.

UNIX process management separates the creation of processes and the

running of a new program into two distinct operations.

 The fork() system call creates a new process.

 A new program is run after a call to exec().

Under UNIX, a process encompasses all the information that the operating

system must maintain to track the context of a single execution of a single

program.

Under Linux, process properties fall into three groups:

 Process Identity

 Environment

 Context.

Process Identity

A process identity consists mainly of the following items:

Process ID (PID): Each process has a unique identifier. The PID is used to

specify the process to the operating system when an application makes a

system call to signal, modify, or wait for the process. Additional identifiers

associate the process with a process group (typically, a tree of processes

forked by a single user command) and login session.

6

Credentials: Each process must have an associated user ID and one or more

group IDs that determine the rights of a process to access system resources

and files.

Personality: Process personalities are special feature in Linux - each

process has an associated personality identifier that can slightly modify the

semantics of certain system calls. Personalities are primarily used by

emulation libraries to request that system calls be compatible with certain

varieties of UNIX.

Process Environment

A process’s environment is inherited from its parent. It is composed of

two null-terminated vectors:

 The argument vector

 The environment vector.

The argument vector simply lists the command-line arguments used to

invoke the running program;

The environment vector is a list of “NAME=VALUE” pairs that associates

named environment variables with arbitrary textual values.

Process Context

Process context is the state of the running program at any one time, like

(ready, running , execution, terminated , waiting). It changes constantly.

Process context includes the following parts

Scheduling context: Scheduler needs to suspend and restart the process.

This information includes saved copies of all the process’s registers. The

scheduling context also includes information about scheduling priority and

about any outstanding signals waiting to be delivered to the process.

7

Accounting: The kernel maintains accounting information about the

resources currently being consumed by each process and the total resources

consumed by the process in its entire lifetime so far.

File table: The file table is an array of pointers to kernel file structures

representing open files. When making file-I/O system calls, processes refer

to files by an integer, known as a file descriptor (fd), that the kernel uses to

index into this table.

File-system context: Whereas the file table lists the existing open files, the

file-system context applies to requests to open new files. The file-system

context includes the process’s root directory, current working directory, and

namespace.

Signal-handler table: UNIX systems can deliver asynchronous signals to

a process in response to various external events. The signal-handler table

defines the action to take in response to a specific signal. Valid actions

include ignoring the signal, terminating the process, and invoking a routine

in the process’s address space.

Virtual memory context: The virtual memory context describes the full

contents of a process’s private address space. Linux provides the fork()

system call, which duplicates a process without loading a new executable

image.

Linux also provides the ability to create threads via the clone() system call.

Linux does not distinguish between processes and threads. In fact, Linux

generally uses the term task, rather than process or thread when referring to

a flow of control within a program.

The clone() system call behaves identically to fork(), except that it accepts

as arguments a set of flags that dictate what resources are shared between

the parent and child (whereas a process created with fork() shares no

resources with its parent).

8

Process Scheduling

Scheduling is the job of allocating CPU time to different tasks within an

operating system. Linux, like all UNIX systems, supports preemptive

multitasking.

In such a system, the process scheduler decides which process runs and

when. Linux has two separate process-scheduling algorithms.

 Time-sharing algorithm

 Completely Fair Scheduler (CFS)

Time-sharing algorithm: is designed for fair, preemptive scheduling

among multiple processes (like round robin).

Completely Fair Scheduler (CFS): is designed for real-time tasks, where

absolute priorities are more important than fairness (like priority). This

Linux scheduler is a preemptive, priority-based algorithm with two separate

priority ranges: a real-time range from 0 to 99 and a nice value ranging from

20 to 19.

Smaller nice values indicate higher priorities. Thus, by increasing the nice

value, you are decreasing your priority and being “nice” to the rest of the

system. CFS introduced a new scheduling algorithm called fair scheduling

that eliminates time slices in the traditional sense.

Instead of time slices, all processes are allotted a proportion of the

processor’s time. CFS calculates how long a process should run as a

function of the total number of runnable processes.

To start, CFS says that if there are N runnable processes, then each should

be afforded 1/N of the processor’s time. CFS then adjusts this allotment by

weighting each process’s allotment by its nice value.

Processes with the default nice value have a weight of 1 their priority is

unchanged. Processes with a smaller nice value (higher priority) receive a

higher weight, while processes with a larger nice value (lower priority)

receive a lower weight. CFS then runs each process for a “time slice”

9

proportional to the process’s weight divided by the total weight of all

runnable processes.

Memory Management

Linux’s physical memory-management system deals with allocating and

freeing pages, groups of pages, and small blocks of memory. It has

additional mechanisms for handling virtual memory, memory mapped into

the address space of running processes.

Memory management under Linux has two components.

 Management of Physical Memory: Deals with allocating and

freeing physical memory, pages, groups of pages, and small blocks

of RAM.

 Management of Virtual Memory: Virtual memory, which is

memory-mapped into the address space of running processes.

Management of Physical Memory

Due to specific hardware constraints, Linux separates physical memory into

four different zones, or regions:

 ZONE DMA (the first 16 MB of physical memory comprise

ZONE DMA)

 ZONE DMA32(certain devices can only access the first 4 GB of

physical memory, despite supporting 64-bit addresses)

 ZONE NORMAL (comprises everything else, the normal,

regularly mapped pages.)

 ZONE HIGHMEM (for “high memory”) refers to physical

memory that is not mapped into the kernel address space)

The region is broken up recursively until a piece of the desired size is

available.

10

Fig 5.2 Relationship of zones and physical addresses in Intel x86-32

All memory allocations in the Linux kernel are made either statically by

drivers that reserve a contiguous area of memory during system boot time,

or dynamically, by the page allocator.

The most important are the virtual memory system, the kmalloc() variable-

length allocator; the slab allocator, used for allocating memory for kernel

data structures; and the page cache, used for caching pages belonging to

files.

Analogous to the C language’s malloc() function, this kmalloc() service

allocates entire physical pages on demand but then splits them into smaller

pieces. The kernel maintains lists of pages in use by the kmalloc() service.

Memory regions claimed by the kmalloc() system are allocated

permanently until they are freed explicitly with a corresponding call to

kfree(). Another strategy adopted by Linux for allocating kernel memory is

known as slab allocation.

A slab is used for allocating memory for kernel data structures and is made

up of one or more physically contiguous pages. A cache consists of one or

more slabs.

There is a single cache for each unique kernel data structure — for example,

a cache for the data structure representing process descriptors, a cache for

file objects, a cache for inodes, and so forth.

11

Fig 5.3 Slab Allocation

The slab-allocation algorithm uses caches to store kernel objects. When a

cache is created, a number of objects are allocated to the cache. The number

of objects in the cache depends on the size of the associated slab. In Linux,

a slab may be in one of three possible states:

Full: All objects in the slab are marked as used.

Empty: All objects in the slab are marked as free.

Partial: The slab consists of both used and free objects.

The slab allocator first attempts to satisfy the request with a free object in a

partial slab. If none exist, a free object is assigned from an empty slab.

If no empty slabs are available, a new slab is allocated from contiguous

physical pages and assigned to a cache; memory for the object is allocated

from this slab.

Buddy heap allocation:

The allocator uses a buddy system to keep track of available physical pages.

In this scheme, adjacent units of allocatable memory are paired together

12

(hence its name). Each allocatable memory region has an adjacent partner

(or buddy).

Whenever two allocated partner regions are freed up, they are combined to

form a larger region a buddy heap. That larger region also has a partner,

with which it can combine to form a still larger free region.

Conversely, if a small memory request cannot be satisfied by allocation of

an existing small free region, then a larger free region will be subdivided

into two partners to satisfy the request. Separate linked lists are used to

record the free memory regions of each allowable size.

Under Linux, the smallest size allocatable under this mechanism is a single

physical page. Figure 5.3 shows an example of buddy-heap allocation.

Fig 5.4 Splitting of Memory in Buddy System

Management of Virtual Memory

The Virtual Memory system maintains the address space visible to each

process: It creates pages of virtual memory on demand, and manages the

loading of those pages from disk or their swapping back out to disk as

required. The Virtual Memory manager maintains two separate views of a

process’s address space:

13

Logical View: A logical view describing instructions concerning the layout

of the address space. The address space consists of a set of nonoverlapping

regions, each representing a continuous, page-aligned subset of the address

space.

Physical View: A physical view of each address space which is stored in

the hardware page tables for the process.

Virtual memory regions are characterized by:

 The backing store, which describes from where the pages for a

region come; regions are usually backed by a file or by nothing

(demand-zero memory)

 The region’s reaction to writes (page sharing or copy-on-write).

The kernel creates a new virtual address space

1. When a process runs a new program with the exec system call

2. Upon creation of a new process by the fork system call.

On executing a new program, the process is given a new, completely empty

virtual-address space; the program-loading routines populate the address

space with virtual-memory regions.

Creating a new process with fork involves creating a complete copy of the

existing process’s virtual address space.

 The kernel copies the parent process’s Virtual Memory Address

descriptors, then creates a new set of page tables for the child.

 The parent’s page tables are copied directly into the child’s, with

the reference count of each page covered being incremented.

 After the fork, the parent and child share the same physical pages

of memory in their address spaces.

14

Input–Output Management

The Linux device-oriented file system accesses disk storage through two

caches:

 Data is cached in the page cache, which is unified with the virtual

memory system.

 Metadata is cached in the buffer cache, a separate cache indexed by

the physical disk block.

Linux splits all devices into three classes:

 block devices allow random access to completely independent,

fixed size blocks of data

 character devices include most other devices; they don’t need to

support the functionality of regular files.

 network devices are interfaced via the kernel’s networking

subsystem.

Block Devices: Provide the main interface to all disk devices in a system.

The block buffer cache serves two main purposes:

 It acts as a pool of buffers for active I/O

 It serves as a cache for completed I/O

The request manager manages the reading and writing of buffer contents to

and from a block device driver.

Character Devices: include most other devices, such as mice and

keyboards. The fundamental difference between block and character

devices is random access block devices are accessed randomly, while

character devices are accessed serially. For example, seeking to a certain

position in a file might be supported for a DVD but makes no sense for a

pointing device such as a mouse.

Network devices: are dealt with differently from block and character

devices. Users cannot directly transfer data to network devices. Instead,

15

they must communicate indirectly by opening a connection to the kernel’s

networking subsystem

File System

Linux’s file system appears as a hierarchical directory tree obeying UNIX

semantics. Internally, the kernel hides implementation details and manages

the multiple different file systems via an abstraction layer, that is, the virtual

file system (VFS).

The Linux VFS is designed around object-oriented principles and is

composed of two components:

 A set of definitions that define what a file object is allowed to look

like

a. the inode-object and the file-object structures represent

individual files

b. the file system object represents an entire file system

 A layer of software to manipulate those objects.

The Linux ext3 File System

Ext2fs uses a mechanism similar to that of BSD Fast File System (ffs) for

locating data blocks belonging to a specific file. The main differences

between ext2fs and ffs concern their disk allocation policies.

 In ffs, the disk is allocated to files in blocks of 8Kb, with blocks

being subdivided into fragments of 1Kb to store small files or

partially filled blocks at the end of a file.

 Ext2fs does not use fragments; it performs its allocations in smaller

units. The default block size on ext2fs is 1Kb, although 2Kb and

4Kb blocks are also supported.

Ext2fs uses allocation policies designed to place logically adjacent blocks

of a file into physically adjacent blocks on disk, so that it can submit an I/O

request for several disk blocks as a single operation

16

Fig 5.5 ext3 block allocation policies

Inter Process Communication

Linux provides a rich environment for processes to communicate with each

other. Communication may be just a matter of letting another process know

that some event has occurred, or it may involve transferring data from one

process to another.

Like UNIX, Linux informs processes that an event has occurred via signals.

There is a limited number of signals, and they cannot carry information:

Only the fact that a signal occurred is available to a process.

The Linux kernel does not use signals to communicate with processes with

are running in kernel mode, rather, communication within the kernel is

accomplished via scheduling states and wait queue structures.

Passing Data between Processes:

The pipe mechanism allows a child process to inherit a communication

channel to its parent. Data written to one end of the pipe can be read at the

other. Shared memory offers an extremely fast way of communicating.

17

Any data written by one process to a shared memory region can be read

immediately by any other process that has mapped that region into its

address space. To obtain synchronization, however, shared memory must

be used in conjunction with another interprocess-communication

mechanism.

Mobile OS

Some important features of Mobile Operating System are

 Alternate Keyboards.

 Infrared Transmission.

 Touch Control.

 Automation.

 Wireless App Downloads.

 Storage and Battery Swap.

 Custom Home Screens.

 Messaging: SMS, MMS, C2DM (could to device messaging),

GCM (Google could messaging)

 Multilanguage support.

 Multi touch.

 Video calling.

 Screen capture.

iOS Architecture

The iOS is the operating system created by Apple Inc. for mobile devices.

The iOS is used in many of the mobile devices for apple such as iPhone,

iPod, iPad etc. The iOS is used a lot and only lags behind Android in terms

of popularity.

18

The iOS architecture is layered. It contains an intermediate layer between

the applications and the hardware, so they do not communicate directly.

The lower layers in iOS provide the basic services and the higher layers

provide the user interface and sophisticated graphics.

The layered architecture of iOS is given as follows:

Fig 5.6 iOS Architecture

Layers in iOS Architecture

The different layers as shown in the above diagram are given as follows:

Core OS: All the iOS technologies are build on the low level features

provided by the Core OS layer. These technologies include Core Bluetooth

Framework, External Accessory Framework, Accelerate Framework,

Security Services Framework, Local Authorization Framework etc.

Core Services: There are many frameworks available in the cure services

layer. Details about some of these are given as follows:

 Cloudkit Framework: The data can be moved between the app the

iCloud using the Cloudkit Framework.

 Core Foundation Framework: This provides the data

management and service features for the iOS apps.

 Core Data Framework: The data model of the model view

controller app is handled using the Core Data Framework.

19

 Address Book Framework: The address book framework

provides access to the contacts database of the user.

 Core Motion Framework: All the motion-based data on the

device is accessed using core motion framework.

 Healthkit Framework: The health-related information of the user

can be handled by this new framework.

 Core Location Framework: This framework provides the location

and heading information to the various apps.

 Media Services: The media layer enables all the graphics, audio

and video technology of the system. The different frameworks are:

 UIKit Graphics: This provides support for designing images and

animating the view content.

 Core Graphics Framework: This provides support for 2-D vector

and image based rendering and is the native drawing engine for iOS

apps.

 Core Animation: The Core Animation technology optimizes the

animation experience of the apps.

 Media Player Framework: This framework provides support for

playing playlists and enables the user to use their iTunes library.

 AV Kit: This provides various easy to use interfaces for video

presentation.

Cocoa Touch: The cocoa touch layer provides the following frameworks:

 EventKit Framework: This shows the standard system interfaces

using view controllers for viewing and changing calendar related

events.

 GameKit Framework: This provides support for users to share

their game related data online using Game center.

 MapKit Framework: This provides a scrollable map which can

be included into the app user interface.

20

Android Architecture

Android operating system is a stack of software components which is

roughly divided into five sections and four main layers as shown below in

the architecture diagram.

Fig 5.7 Android Architecture

Linux kernel: At the bottom of the layers is Linux kernel. This provides a

level of abstraction between the device hardware and it contains all the

essential hardware drivers like camera, keypad, display etc. Also, the kernel

handles networking along with interfacing to peripheral hardware.

Libraries: On top of Linux kernel there is a set of libraries including open-

source Web browser engine WebKit, well known library libc, SQLite

database which is a useful repository for storage and sharing of application

data, libraries to play and record audio and video, SSL libraries responsible

for Internet security etc.

Android Libraries: This category encompasses those Java-based libraries

that are specific to Android development. Examples of libraries in this

category include the application framework libraries in addition to those

that facilitate user interface building, graphics drawing and database access.

21

A summary of some key core Android libraries available to the Android

developer is as follows:

 android.app: Provides access to the application model and is the

cornerstone of all Android applications.

 android.content: Facilitates content access, publishing and

messaging between applications and application components.

 android.database : Used to access data published by content

providers and includes SQLite database management classes.

 android.opengl: A Java interface to the OpenGL ES 3D graphics

rendering API.

 android.os: Provides applications with access to standard

operating system services including messages, system services and

inter-process communication.

 android.text: Used to render and manipulate text on a device

display.

 android.view: The fundamental building blocks of application user

interfaces.

 android.widget: A rich collection of pre-built user interface

components such as buttons, labels, list views, layout managers,

radio buttons etc.

 android.webkit: A set of classes intended to allow web-browsing

capabilities to be built into applications.

Having covered the Java-based core libraries in the Android runtime, it is

now time to turn our attention to the C/C++ based libraries contained in this

layer of the Android software stack.

22

Android Runtime

This is the third section of the architecture and available on the second layer

from the bottom. This section provides a key component called Dalvik

Virtual Machine which is a kind of Java Virtual Machine specially designed

and optimized for Android.

The Dalvik VM makes use of Linux core features like memory management

and multi-threading, which is fundamental in the Java language. The Dalvik

VM enables every Android application to run in its own process, with its

own instance of the Dalvik virtual machine.

The Android runtime also provides a set of core libraries which enable

Android application developers to write Android applications using

standard Java programming language.

Application Framework

The Application Framework layer provides many higher-level services to

applications in the form of Java classes. Application developers are allowed

to make use of these services in their applications.

The Android framework includes the following key services

 Activity Manager: Controls all aspects of the application lifecycle

and activity stack.

 Content Providers: Allows applications to publish and share data

with other applications.

 Resource Manager: Provides access to non-code embedded

resources such as strings, color settings and user interface layouts.

 Notifications Manager: Allows applications to display alerts and

notifications to the user.

 View System: An extensible set of views used to create application

user interfaces.

23

Applications

All the Android application are available at the top layer. If we write our

application that is to be installed on this layer only. Examples of such

applications are Contacts Books, Browser, Games etc.

	Chapter Five
	Linux Systems And Mobile Operating Systems
	Linux System
	Design principles
	Kernel Modules
	Process Management
	Process Scheduling
	Memory Management
	Input–Output Management
	File System
	Inter Process Communication
	Mobile OS
	Some important features of Mobile Operating System are
	 Alternate Keyboards.
	 Infrared Transmission.
	 Touch Control.
	 Automation.
	 Wireless App Downloads.
	 Storage and Battery Swap.
	 Custom Home Screens.
	 Messaging: SMS, MMS, C2DM (could to device messaging), GCM (Google could messaging)
	 Multilanguage support.
	 Multi touch.
	 Video calling.
	 Screen capture.
	Android Architecture

