
JEPPIAAR INSTITUTE OF TECHNOLOGY

“Self-Belief | Self Discipline | Self Respect”

DEPARTMENT

OF

COMPUTER SCIENCE AND ENGINEERING

LECTURE NOTES

CS8493 – OPERATING SYSTEM

(Regulation 2017)

Year/Semester: II / 04 CSE

2020 – 2021

Prepared by

Mr.H.SHINE

Assistant Professor / CSE

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 1

UNIT II - PROCESS MANAGEMENT

Processes - Process Concept, Process Scheduling, Operations on Processes, Inter-

process Communication; CPU Scheduling - Scheduling criteria, Scheduling

algorithms, Multiple-processor scheduling, Real time scheduling; Threads-

Overview, Multithreading models, Threading issues; Process Synchronization -

The critical-section problem, Synchronization hardware, Mutex locks,

Semaphores, Classic problems of synchronization, Critical regions, Monitors;

Deadlock - System model, Deadlock characterization, Methods for handling

deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection,

Recovery from deadlock.

2. PROCESS

2.1 Process Concept

 A process is a program in execution.

 Each process is represented in the operating system by a process control block

(PCB)-also called a task control block

Program Process

A program is a passive entity a process is an active entity

Ex : contents of a file stored on disk with a program counter and a set of
resources

Process States:

Fig :Process State Transition Diagram

 As a process executes, it changes state.

 The state of a process is defined in part by the current activity of that process.

 Each process may be in one of the following states:

 New: The process is being created.

 Running: Instructions are being executed.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 2

 Waiting: The process is waiting for some event to occur (such

as an I/O completion or reception of a signal).

 Ready: The process is waiting to be assigned to a processor.

 Terminated: The process has finished execution.

Process Control Block

 Each process is represented in the operating system by a process control block

(PCB)-also called a task control block.

 A PCB defines a process to the operating system.

 It contains the entire information about a process.

 Some of the information a PCB contans are:

Process state: The state may be new, ready, running, waiting, halted, and SO

on.

Program counter: The counter indicates the address of the next instruction

to be executed for this process.

CPU registers: The registers vary in number and type, depending on the

computer architecture.

CPU-scheduling information: This information includes a process priority,

pointers to scheduling queues, and any other scheduling parameters.

Memory-management information: value of the base and limit registers, the

page tables, or the segment tables, depending on the memory system used by

the operating system.

Fig : Process Control Block

Accounting information: This information includes the amount of CPU and

real time used, time limits, account numbers, job or process numbers, and so on.

Status information: The information includes the list of I/O devices allocated

to this process, a list of open files, and so on.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 3

2.2 Process Scheduling

 The objective of multiprogramming is to have some process running at all

times, so as to maximize CPU utilization.

Scheduling Queues

There are 3 types of scheduling queues .They are :

1. Job Queue

2. Ready Queue

3. Device Queue

 As processes enter the system, they are put into a job queue.

 The processes that are residing in main memory and are ready and waiting to

execute are kept on a list called the ready queue.

 The list of processes waiting for an I/O device is kept in a device queue for that

particular device.

Fig : Various Scheduling Queue

 A new process is initially put in the ready queue. It waits in the ready queue

until it is selected for execution (or dispatched).

 Once the process is assigned tothe CPU and is executing, one of several

events could occur:

 The process could issue an I/O request, and then be placed in an I/O

queue.

 The process could create a new subprocess and wait for its termination.

 The process could be removed forcibly from the CPU, as a result of

aninterrupt, and be put back in the ready Queue.

 A common representation of process scheduling is a queueing diagram.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 4

Fig:Queuing Diagram Representation of Process Scheduling

Schedulers

 A process migrates between the various scheduling queues throughout its

lifetime.

 The operating system must select, for scheduling purposes, processes from these

queues in some fashion.

 The selection process is carried out by the appropriate scheduler.

There are three different types of schedulers.They are:

1. Long-term Scheduler or Job Scheduler

2. Short-term Scheduler or CPU Scheduler

3. Medium term Scheduler

 The long-term scheduler, or job scheduler, selects processes from this

pool and loads them into memory for execution. It is invoked very

infrequently.It controls the degree of multiprogramming.

 The short-term scheduler, or CPU scheduler, selects from among the

processes that are ready to execute, and allocates the CPU to one of them. It is

invoked very frequently.

 Processes can be described as either I/O bound or CPU bound.

 An I\O-bound process spends more of its time doing I/O than it spends

doing computations.

 A CPU-bound process, on the other hand, generates I/O requests

infrequently,using more of its time doing computation than an I/O-bound

process uses.

 The system with the best performance will have a combination of CPU-

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 5

bound and I/O-bound processes.

Medium term Scheduler

 Some operating systems, such as time-sharing systems, may introduce an

additional, intermediate level of scheduling.

 The key idea is medium-term scheduler, removes processes from memory and

thus reduces the degree of multiprogramming.

 At some later time, the process can be reintroduced into memory and its

execution can be continued where it left off. This scheme is called swapping.

Fig :Addition of Medium term Scheduling to Queuing Diagram

Context Switch

 Switching the CPU to another process requires saving the state of the old process

and loading the saved state for the new process.

 This task is known as a context switch.

 Context-switch time is pure overhead, because the system does no useful work

while switching.

 Its speed varies from machine to machine, depending on the memory speed, the

number of registers that must be copied, and the existence of special instructions.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 6

2.3 Operations on Processes

1. Process Creation

 A process may create several new processes, during the course of execution.

 The creating process is called a parent process, whereas the new processes are

called the children of that process.

 When a process creates a new process, two possibilities exist in terms of

execution:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

 There are also two possibilities in terms of the address space of the new

process:

1. The child process is a duplicate of the parent process.

2. The child process has a program loaded into it.

 In UNIX, each process is identified by its process identifier, which is a unique

integer. A new process is created by the fork system call.

2. Process Termination

 A process terminates when it finishes executing its final statement and asks the

operating system to delete it by using the exit system call.

 At that point, the process may return data (output) to its parent process (via the

wait system call).

 A process can cause the termination of another process via an appropriate system

call.

 A parent may terminate the execution of one of its children for a variety of

reasons, such as these:

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 7

1. The child has exceeded its usage of some of the resources that it has been

allocated.

2. The task assigned to the child is no longer required.

3. The parent is exiting, and the operating system does not allow a child to

continue if its parent terminates. On such systems, if a process terminates

(either normally or abnormally), then all its children must also be

terminated. This phenomenon, referred to as cascading termination, is

normally initiated by the operating system.

Cooperating Processes

 The concurrent processes executing in the operating system may be either

independent processes or cooperating processes.

 A process is independent if it cannot affect or be affected by the other processes

executing in the system.

 A process is cooperating if it can affect or be affected by the other processes

executing in the system.

Benefits of Cooperating Processes

1. Information sharing

2. Computation speedup

3. Modularity

4. Convenience

Example : Producer – Consumer Problem

 A producer process produces information that is consumed by a consumer

process.

 For example, a print program produces characters that are consumed by the

printer driver. A compiler may produce assembly code, which is consumed by

an assembler.

 To allow producer and consumer processes to run concurrently, we must have

available a buffer of items that can be filled by the producer and emptied by the

consumer.

o unbounded-buffer: places no practical limit on the size of the buffer.

o bounded-buffer : assumes that there is a fixed buffer size.

Shared data

#define BUFFER_SIZE

10 typedef struct {

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 8

. . .

} item;

item

buffer[BUFFER_SIZE]; int

in = 0;

int out = 0;

The shared buffer is implemented as a circular array with two logical pointers: in and

out. The variable in points to the next free position in the buffer; out points to the

first full position in the buffer. The buffer is empty when in == out ; the buffer is full

when ((in + 1) % BUFFERSIZE) == out.

Producer Process

while (1)

{

while (((in + 1) % BUFFER_SIZE) == out);

/* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

}

Consumer process

while (1)

{

while (in == out);

/* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

}

2.4 Interprocess Communication

 Operating systems provide the means for cooperating processes to communicate

with each other via an interprocess communication (PC) facility.

 IPC provides a mechanism to allow processes to communicate and to

synchronize their actions.IPC is best provided by a message passing system.

Basic Structure:

 If processes P and Q want to communicate, they must send messages to and

receive messages from each other; a communication link must exist between

them.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 9

 Physical implementation of the link is done through a hardware bus , network

etc,

 There are several methods for logically implementing a link and the operations:

1. Direct or indirect communication

2. Symmetric or asymmetric communication

3. Automatic or explicit buffering

4. Send by copy or send by reference

5. Fixed-sized or variable-sized messages

Naming:

 Processes that want to communicate must have a way to refer to each other. They

can use either direct or indirect communication.

1. Direct Communication

 Each process that wants to communicate must explicitly name the

recipient or sender of the communication.

 A communication link in this scheme has the following properties:

i.A link is established automatically between every pair of processes

that want to communicate. The processes need to know only each

other's identity to communicate.

ii. A link is associated with exactly two processes.

iii. Exactly one link exists between each pair of processes.

 There are two ways of addressing namely

 Symmetry in addressing

 Asymmetry in addressing

 In symmetry in addressing, the send and receive primitives are

defined as:

send(P, message) Send a message to process P

receive(Q, message) Receive a message from Q

 In asymmetry in addressing , the send & receive primitives are

defined as:

send (p, message) send a message to process p

receive(id, message) receive message from any process, id is set

to the name of the process with which communication has taken

place

2. Indirect Communication

 With indirect communication, the messages are sent to and received from

mailboxes, or ports.

 The send and receive primitives are defined as follows:

send (A, message) Send a message to mailbox A.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 10

receive (A, message) Receive a message from mailbox A.

 A communication link has the following properties:

i. A link is established between a pair of processes only if both

members of the pair have a shared mailbox.

ii. A link may be associated with more than two processes.

iii. A number of different links may exist between each pair of

communicating processes, with each link corresponding to one

mailbox

3. Buffering

 A link has some capacity that determines the number of message that can reside

in it temporarily. This property can be viewed as a queue of messages attached

to the link.

 There are three ways that such a queue can be implemented.

 Zero capacity: Queue length of maximum is 0. No message is waiting in a

queue. The sender must wait until the recipient receives the message. (message

system with no buffering)

 Bounded capacity: The queue has finite length n. Thus at most n messages can

reside in it.

 Unbounded capacity: The queue has potentially infinite length. Thus any

number of messages can wait in it. The sender is never delayed

4. Synchronization

 Message passing may be either blocking or non-blocking.

1. Blocking Send - The sender blocks itself till the message sent by it is

received by the receiver.

2. Non-blocking Send - The sender does not block itself after sending the

message but continues with its normal operation.

3. Blocking Receive - The receiver blocks itself until it receives the

message.

4. Non-blocking Receive – The receiver does not block itself.

2.5 CPU Scheduling

 CPU scheduling is the basis of multi programmed operating systems.

 The objective of multiprogramming is to have some process running at all times,

in order to maximize CPU utilization.

 Scheduling is a fundamental operating-system function.

 Almost all computer resources are scheduled before use.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 11

CPU-I/O Burst Cycle

 Process execution consists of a cycle of CPU execution and I/O wait.

 Processes alternate between these two states.

 Process execution begins with a CPU burst.

 That is followed by an I/O burst, then another CPU burst, then another I/O burst,

and so on.

 Eventually, the last CPU burst will end with a system request to terminate

execution, rather than with another I/O burst.

2.5.1 CPU Scheduler

 Whenever the CPU becomes idle, the operating system select one of the

processes in the ready queue for execution.

 The selection process is carried out by the short-term scheduler (or CPU

scheduler).

 The ready queue is not necessarily a first-in, first-out (FIFO) queue. It may be a

FIFO queue, a priority queue, a tree, or simply an unordered linked list.

Preemptive Scheduling

 CPU scheduling decisions may take place under the following four

circumstances:

1. When a process switches from the running state to the waiting state

2. When a process switches from the running state to the ready state

3. When a process switches from the waiting state to the ready state

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 12

4. When a process terminates

 Under 1 & 4 scheduling scheme is non preemptive.

Otherwise the scheduling scheme is preemptive.

Non-preemptive Scheduling

 In non preemptive scheduling, once the CPU has been allocated a process, the

process keeps the CPU until it releases the CPU either by termination or by

switching to the waiting state.

 This scheduling method is used by the Microsoft windows environment.

Dispatcher

 The dispatcher is the module that gives control of the CPU to the process selected

by the short-term scheduler.

 This function involves:

1. Switching context

2. Switching to user mode

3. Jumping to the proper location in the user program to restart that

program

Scheduling Criteria

1. CPU utilization: The CPU should be kept as busy as possible. CPU utilization

may range from 0 to 100 percent. In a real system, it should range from 40

percent (for a lightly loaded system) to 90 percent (for a heavily used system).

2. Throughput: Itis the number of processes completed per time unit. For long

processes, this rate may be 1 process per hour; for short transactions, throughput

might be 10 processes per second.

3. Turnaround time: The interval from the time of submission of a process to the

time of completion is the turnaround time. Turnaround time is the sum of the

periods spent waiting to get into memory, waiting in the ready queue, executing

on the CPU, and doing I/O.

4. Waiting time: Waiting time is the sum of the periods spent waiting in the ready

queue.

5. Response time: It is the amount of time it takes to start responding, but not the

time that it takes to output that response.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 13

2.5.2 CPU Scheduling Algorithms

1. First-Come, First-Served Scheduling

2. Shortest Job First Scheduling

3. Priority Scheduling

4. Round Robin Scheduling

 First-Come, First-Served Scheduling

 The process that requests the CPU first is allocated the CPU first.

 It is a non-preemptive Scheduling technique.

 The implementation of the FCFS policy is easily managed with a FIFO queue.

Example:

Process Burst Time

P1 24

P2 3

P3 3

 If the processes arrive in the order PI, P2, P3, and are served in FCFS order, we

get the result shown in the following Gantt chart:

Gantt Chart

Average waiting time = (0+24+27) / 3 = 17 ms

Average Turnaround time = (24+27+30) / 3 = 27 ms

 The FCFS algorithm is particularly troublesome for time – sharing systems,

where it is important that each user get a share of the CPU at regular intervals.

 Shortest Job First Scheduling

 The CPU is assigned to the process that has the smallest next CPU burst.

 If two processes have the same length next CPU burst, FCFS scheduling is used

to break the tie.

Example :

Process Burst Time

P1 6

P2 8

P3 7

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 14

P4 3

Gantt Chart

Average waiting time is (3 + 16 + 9 + 0)/4 = 7 ms

Average turnaround time = (3+9+16+24) / 4 = 13 ms

 Preemptive & non preemptive scheduling is used for SJF

Example :

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

 Preemptive Scheduling

 It is a preemptive scheduling technique.

 Preemptive SJF is known as shortest remaining time first (SRTF)

Average waiting

time : P1 : 10

– 1 = 9

P2 : 1 – 1 = 0

P3 : 17 – 2 = 15

P4 : 5 – 3 = 2

AWT = (9+0+15+2) / 4 = 6.5 ms

 Non-preemptive Scheduling

AWT = 0 + (8 – 1) + (12 – 3) + (17 – 2) / 4 = 7.75 ms

 Priority Scheduling

 A priority is associated with each process, and the CPU is allocated to the process

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 15

with the highest priority.(smallest integer highest priority).

Example :

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

AWT=8.2 ms

 Priority Scheduling can be preemptive or non-preemptive.

 Drawback : Starvation – low priority processes may never execute.

 Solution : Aging – It is a technique of gradually increasing the priority of

processes that wait in the system for a long time.

 Round-Robin Scheduling

 The round-robin (RR) scheduling algorithm is designed especially for

timesharing systems.

 It is similar to FCFS scheduling, but preemption is added to switch between

processes.

 A small unit of time, called a time quantum (or time slice), is defined.

 The ready queue is treated as a circular queue.

Example :

Process Burst Time

P1 24

P2 3

P3 3

Time Quantum = 4 ms.

Waiting time

P1 = 26 – 20 = 6

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 16

P2 = 4

P3 = 7 (6+4+7 / 3 = 5.66 ms)

 The average waiting time is 17/3 = 5.66 milliseconds.

 The performance of the RR algorithm depends heavily on the size of the time–

quantum.

 If time-quantum is very large(infinite) then RR policy is same as FCFS policy.

 If time quantum is very small, RR approach is called processor sharing and

appears to the users as though each of n process has its own processor running

at 1/n the speed of real processor.

 Multilevel Queue Scheduling

 It partitions the ready queue into several separate queues .

 The processes are permanently assigned to one queue, generally based on some

property of the process, such as memory size, process priority, or process type.

 There must be scheduling between the queues, which is commonly implemented

as a fixed-priority preemptive scheduling.

 For example the foreground queue may have absolute priority over the

background queue.

Example : of a multilevel queue scheduling algorithm with five queues

1. System processes

2. Interactive processes

3. Interactive editing processes

4. Batch processes

5. Student processes

 Each queue has absolute priority over lower-priority queue.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 17

 Multilevel Feedback Queue Scheduling

 It allows a process to move between queues.

 The idea is to separate processes with different CPU-burst characteristics.

 If a process uses too much CPU time, it will be moved to a lower-priority

queue.

 This scheme leaves I/O-bound and interactive processes in the higher-priority

queues.

 Similarly, a process that waits too long in a lower priority queue may be

moved to a higher-priority queue.

 This form of aging prevents starvation.

Example:

 Consider a multilevel feedback queue scheduler with three queues, numbered

from 0 to 2 .

 The scheduler first executes all processes in queue 0.

 Only when queue 0 is empty will it execute processes in queue 1.

 Similarly, processes in queue 2 will be executed only if queues 0 and 1 are empty.

 A process that arrives for queue 1 will preempt a process in queue 2.

 A process that arrives for queue 0 will, in turn, preempt a process in queue 1.

 A multilevel feedback queue scheduler is defined by the following parameters:

1. The number of queues

2. The scheduling algorithm for each queue

3. The method used to determine when to upgrade a process to a higher

priority queue

4. The method used to determine when to demote a process to a lower-

priority queue

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 18

5. The method used to determine which queue a process will enter when

that process needs service

2.6 Multiple Processor Scheduling

 If multiple CPUs are available, the scheduling problem is correspondingly more

complex.

 If several identical processors are available, then load-sharing can occur.

 It is possible to provide a separate queue for each processor.

 In this case however, one processor could be idle, with an empty queue, while

another processor was very busy.

 To prevent this situation, we use a common ready queue.

 All processes go into one queue and are scheduled onto any available processor.

 In such a scheme, one of two scheduling approaches may be used.

1. Self Scheduling - Each processor is self-scheduling. Each processor examines

the common ready queue and selects a process to execute. We must ensure that

two processors do not choose the same process, and that processes are not lost

from the queue.

2. Master – Slave Structure - This avoids the problem by appointing one

processor as scheduler for the other processors, thus creating a master-slave

structure.

2.7 Real-Time Scheduling

 Real-time computing is divided into two types.

1. Hard real-time systems

2. Soft real-time systems

 Hard RTS are required to complete a critical task within a guaranteed amount of

time.

 Generally, a process is submitted along with a statement of the amount of time

in which it needs to complete or perform I/O.

 The scheduler then either admits the process, guaranteeing that the process will

complete on time, or rejects the request as impossible.This is known as resource

reservation.

 Soft real-time computing is less restrictive. It requires that critical processes

recieve priority over less fortunate ones.

 The system must have priority scheduling, and real-time processes must have the

highest priority.

 The priority of real-time processes must not degrade over time, even though the

priority of non-real-time processes may.

 Dispatch latency must be small. The smaller the latency, the faster a real-time

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 19

process can start executing.

 The high-priority process would be waiting for a lower-priority one to finish.

This situation is known as priority inversion.

Algorithm Evaluation

 To select an algorithm, we must first define the relative importance of these

measures.

 Maximize CPU utilization

 Maximize throughput

 Algorithm Evaluation can be done using

1. Deterministic Modeling

2. Queueing Models

3. Simulation

Deterministic Modeling

 One major class of evaluation methods is called analytic evaluation.

 One type of analytic evaluation is deterministic modeling.

 This method takes a particular predetermined workload and defines the

performance of each algorithm for that workload.

Queueing Models

 The computer system is described as a network of servers.

 Each server has a queue of waiting processes.

 The CPU is a server with its ready queue, as is the I/O system with its device

queues.

 Knowing arrival rates and service rates, we can compute utilization, average

queue length, average wait time, and so on.

 This area of study is called queueing-network analysis.

 Let n be the average queue length, let W be the average waiting time in the queue,

and let X be the average arrival rate for new processes in the queue.

 This equation is known as Little's formula.

 Little's formula is particularly useful because it is valid for any scheduling

algorithm and arrival distribution.

2.8 Threads

 A thread is the basic unit of CPU utilization.

 It is sometimes called as a lightweight process.

 It consists of a thread ID ,a program counter, a register set and a stack.

 It shares with other threads belonging to the same process its code section , data

n=λ*W

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 20

section, and resources such as open files and signals.

 A traditional or heavy weight process has a single thread of control.

 If the process has multiple threads of control,it can do more than one task at a

time.

Benefits of multithreaded programming

 Responsiveness

 Resource Sharing

 Economy

 Utilization of MP Architectures

User thread and Kernel threads

User threads

 Supported above the kernel and implemented by a thread library at

the user level.

 Thread creation , management and scheduling are done in user space.

 Fast to create and manage

 When a user thread performs a blocking system call ,it will cause the

entire process to block even if other threads are available to run within

the application.

 Example: POSIX Pthreads,Mach C-threads and Solaris 2 UI-threads.

Kernel threads

 Supported directly by the OS.

 Thread creation , management and scheduling are done in kernel space.

 Slow to create and manage

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 21

 When a kernel thread performs a blocking system call ,the kernel

schedules another thread in the application for execution.

 Example: Windows NT, Windows 2000 , Solaris 2,BeOS and Tru64 UNIX

support kernel threads.

2.9 Multithreading models

1. Many-to-One

2. One-to-One

3. Many-to-Many

1. Many-to-One:

 Many user-level threads mapped to single kernel thread.

 Used on systems that do not support kernel threads.

Many-to-One Model

2. One-to-One:

 Each user-level thread maps to a kernel thread.

 Examples

- Windows 95/98/NT/2000

- OS/2

One-to-one Model

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 22

3. Many-to-Many Model:

 Allows many user level threads to be mapped to many kernel threads.

 Allows the operating system to create a sufficient number of kernel threads.

 Solaris 2

 Windows NT/2000

Many-to-Many Model

2.10 Threading Issues

1. fork() and exec() system calls :

A fork() system call may duplicate all threads or duplicate only the thread that

invoked fork().

If a thread invoke exec() system call ,the program specified in the parameter to exec

will replace the entire process.

2. Thread cancellation:

It is the task of terminating a thread before it has completed .

A thread that is to be cancelled is called a target thread.

There are two types of cancellation namely

1. Asynchronous Cancellation – One thread immediately terminates the target

thread.

2. Deferred Cancellation – The target thread can periodically check if it should

terminate , and does so in an orderly fashion.

3. Signal handling:

1. A signal is a used to notify a process that a particular event has occurred.

2. A generated signal is delivered to the process.

a. Deliver the signal to the thread to which the signal applies.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 23

b. Deliver the signal to every thread in the process.

c. Deliver the signal to certain threads in the process.

d. Assign a specific thread to receive all signals for the process.

3. Once delivered the signal must be handled.

a. Signal is handled by

i. A default signal handler

ii. A user defined signal handler

4. Thread pools

Creation of unlimited threads exhausts system resources such as CPU time or

memory. Hence we use a thread pool. In a thread pool, a number of threads are

created at process startup and placed in the pool.

When there is a need for a thread the process will pick a thread from the pool and

assign it a task.

After completion of the task, the thread is returned to the pool.

5. Thread specific data

Threads belonging to a process share the data of the process. However each thread

might need its own copy of certain data known as thread-specific data.

WINDOWS 7 -THREAD AND SMP MANAGEMENT

Windows Threads:

 Windows implements the Windows API, which is the primary API for the family

of Microsoft operating systems (Windows 98, NT, 2000, and XP, as well as

Windows 7).

 A Windows application runs as a separate process, and each process may contain

one or more threads.

 The general components of a thread include:

1. A thread ID uniquely identifying the thread

2. A register set representing the status of the processor

3. A user stack, employed when the thread is running in user mode, and a

4. A kernel stack, employed when the thread is running in kernel mode

5. A private storage area used by various run-time libraries and dynamic link

libraries (DLLs) The register set, stacks, and private storage area are known as the

context of the thread.

The primary data structures of a thread include:

1. ETHREAD — Executive Thread Block

2. KTHREAD — Kernel Thread Block

3. TEB — Thread Environment Block

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 24

 The key components of the ETHREAD include a pointer to the process to which the

thread belongs and the address of the routine in which the thread starts control. The

ETHREAD also contains a pointer to the corresponding KTHREAD.

 The KTHREAD includes scheduling and synchronization information for the

thread. In addition, the KTHREAD includes the kernel stack (used when the thread

is running in kernel mode) and a pointer to the TEB.

 The ETHREAD and the KTHREAD exist entirely in kernel space; this means that

only the kernel can access them. The TEB is a user-space data structure that is

accessed when the thread is running in user mode. Among other fields, the TEB

contains the thread identifier, a user-mode stack, and an array for thread-local

storage.

2.11 Process Synchronization

 Concurrent access to shared data may result in data inconsistency.

 Maintaining data consistency requires mechanisms to ensure the orderly

execution of cooperating processes.

Shared-memory solution to bounded-butter problem allows at most n – 1 items in

buffer at the same time. A solution, where all N buffers are used is not simple.

 Suppose that we modify the producer-consumer code by adding a variable

counter, initialized to 0 and increment it each time a new item is added to the

buffer

 Race condition: The situation where several processes access – and manipulate

shared data concurrently. The final value of the shared data depends upon which

process finishes last.

 To prevent race conditions, concurrent processes must be synchronized.

Consider the bounded buffer problem , where an integer variable counter, initialized

to 0 is added . counter is incremented every time we add a new item to the buffer

and is decremented every time we remove one item from the buffer.

The code for the producer process can be modified as follows:

while (true)

{ /* produce an item in next produced */

while (counter == BUFFER SIZE) ;

/* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE; counter++;

}

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 25

The code for the consumer process can be modified as follows:

while (true)

{ while (counter == 0) ;

/* do nothing */

next consumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

counter--;

/* consume the item in next consumed */ }

Let the current value of counter be 5. If producer process and consumer process

execute the statements counter++ and counter—concurrently then the value of

counter may be 4,5 or 6 which is incorrect.

To explain this further, counter ++ may be implemented in machine language as

follows:

register1 = counter

register1 = register1 + 1

counter = register1

and counter - - may be implemented as follows:

register2 = counter

register2 = register2 - 1

counter = register2

The concurrent execution of counter ++ and counter - - is equivalent to a sequential

execution of the statement are interleaved in some arbitrary order. One such

interleaving is given below:

T0: producer execute register1 = counter {register1 = 5}

T1: producer execute register1 = register1 + 1 { register1 = 6}

T2: consumer execute register2 = counter { register2 = 5}

T3: consumer execute register2 = register2 − 1 { register2 = 4}

T4: producer execute counter = register1 {counter = 6}

T5: consumer execute counter = register2 {counter = 4}

A situation like this, where several processes access and manipulate the same data

concurrently and the outcome of the execution depends on the particular order in

which the access takes place, is called a race condition.

To guard against the race condition above, we need to ensure that only one process

at a time can be manipulating the variable counter.

1. The Critical-Section Problem

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 26

 There are n processes that are competing to use some shared data

 Each process has a code segment, called critical section, in which the shared

data is accessed.

 Problem – ensure that when one process is executing in its critical section,

no other process is allowed to execute in its critical section.

Requirements to be satisfied for a Solution to the Critical-Section Problem:

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections.

2. Progress - If no process is executing in its critical section and there exist some

processes that wish to enter their critical section, then the selection of the

processes that will enter the critical section next cannot be postponed

indefinitely.

3. Bounded Waiting - A bound must exist on the number of times that other

processes are allowed to enter their critical sections after a process has made a

request to enter its critical section and before that request is granted.

General structure of process Pi

General structure of process Pi

do {

critical section

remainder section

} while (1);

Two general approaches are used to handle critical sections in operating systems:

preemptive kernels and non-preemptive kernels.

 A preemptive kernel: allows a process to be preempted while it is running in

kernel mode.

 A non-preemptive kernel: does not allow a process running in kernel mode to

be preempted; a kernel-mode process will run until it exits kernel mode, blocks,

or voluntarily yields control of the CPU.

 Obviously, a non-preemptive kernel is essentially free from race conditions on

kernel data structures, as only one process is active in the kernel at a time.

 We cannot say the same about preemptive kernels, so they must be carefully

designed to ensure that shared kernel data are free from race conditions.

entry section

exit section

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 27

 Preemptive kernels are especially difficult to design for SMP architectures,

since in these environments it is possible for two kernel-mode processes to run

simultaneously on different processors.

Two Process solution to the Critical Section Problem

Algorithm 1:

do {

critical section

remainder section

} while (1);

CONCLUSION: Satisfies mutual exclusion, but not progress and bounded

waiting

Algorithm 2:

do {

while (flag[j]) ;

critical section

remainder

section } while (1);

CONCLUSION: Satisfies mutual exclusion, but not progress and bounded waiting

Algorithm 3:

do {

flag[i]=true;

turn = j;

while (flag[j]&& turn==j) ;

critical section

flag[i]=false;

remainder

section } while (1);

CONCLUSION: Meets all three requirements; solves the critical-section problem for

two processes.

flag[i]=true;

while (turn != i) ;

turn =j;

flag[i]=false;

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 28

Multiple –process solution or n- process solution or Bakery Algorithm :

 Before entering its critical section, process receives a number. Holder of the

smallest number enters the critical section.

 If processes Pi and Pj receive the same number, if i < j, then Pi is served first;

else Pj is served first.

 (a,b) < (c,d) if a < c or if a = c and b < d

 boolean

choosing[n]; int

number[n];

Data structures are initialized to false and 0 respectively

do {

cCritical section

remainder section

} while (1);

1. Mutual Exclusion is satisfied.

2. Progress and Bounded waiting are also satisfied as the processes enter the

critical section on a FCFS basis.

2. Mute locks

Mutex(Mutual Exclusion) lock is a simple software tool that solves the critical section

problem.

 The mutex lock is used to protect critical regions and thus prevent race

conditions.

 A process must acquire the lock before entering a critical section; it releases the

lock when it exits the critical section.

 The acquire() function acquires the lock, and the release() function releases the

lock.

 A mutex lock has a boolean variable available whose value indicates if the lock

choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false; for (j = 0; j < n; j++)

{

while (choosing[j]) ;

while ((number[j] != 0) && (number[j,j] < number[i,i])) ;

number[i] = 0;

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 29

is available or not.

 If the lock is available, a call to acquire() succeeds, and the lock is then

considered unavailable.

 A process that attempts to acquire an unavailable lock is blocked until the lock

is released.

The definition of acquire() is as follows:

acquire()

{ while (!available) ;

/* busy wait */

available = false;; }

Solution to the critical-section problem using mutex locks.

do

{ acquire lock

critical section

release lock

remainder section

} while (true);

The definition of release() is as follows:

release()

{ available = true;

}

 Calls to either acquire() or release() must be performed atomically.

 The main disadvantage of the implementation given here is that it requires busy

waiting.

 mutex lock is also called a spinlock because the process “spins” while waiting

for the lock to become available.

 Advantage of Spinlocks is that no context switch is required when a process must

wait on a lock.

 When locks are expected to be held for short times, spinlocks are useful.

3. Synchronization Hardware:

The two instructions that are used to provide synchronization to hardware are :

1. TestAndSet

2. Swap

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 30

TestAndSet instruction

boolean TestAndSet(boolean &target)

{

boolean rv =

target; target =

true; return rv;

}

Mutual Exclusion with Test-and-Set:

do {

critical section

Swap instruction

remainder section

}while(1);

void Swap(boolean &a, boolean &b)

{

boolean temp = a; a = b;

b = temp; }

Mutual Exclusion with Swap:

do

{

key = true;

while (key == true)

Swap(lock,key);

critical section

while (TestAndSet(lock)) ;

lock = false;

lock=false;

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 31

remainder section

}while(1);

4. Semaphores:

 It is a synchronization tool that is used to generalize the solution to the critical

section problem in complex situations.

 A Semaphore s is an integer variable that can only be accessed via two indivisible

(atomic) operations namely

1. wait or P operation (to test)

2. signal or V operation (to increment)

wait (s)

{

while(s0); s--;

}

signal (s)

{

s++;

}

Mutual Exclusion Implementation using semaphore

do

{

critical section

remainder

section } while (1);

Semaphore Implementation

 The semaphore discussed so far requires a busy waiting. That is if a process is in

critical-section, the other process that tries to enter its critical-section must loop

continuously in the entry code.

wait(mutex);

signal(mutex);

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 32

 To overcome the busy waiting problem, the definition of the semaphore

operations wait and signal should be modified.

 When a process executes the wait operation and finds that the semaphore

value is not positive, the process can block itself. The block operation

places the process into a waiting queue associated with the semaphore.

 A process that is blocked waiting on a semaphore should be restarted

when some other process executes a signal operation. The blocked

process should be restarted by a wakeup operation which put that process

into ready queue.

 To implemented the semaphore, we define a semaphore as a record as:

typedef

struct { int

value;

struct process *L;

} semaphore;

 Assume two simple operations:

 block suspends the process that invokes it.

 wakeup(P) resumes the execution of a blocked process P.

 Semaphore operations now defined as

wait(S)

{

S.value--;

if (S.value < 0) {

add this process to

S.L; block;

}

signal(S)

{

S.value++;

if (S.value <= 0) {

remove a process P from S.L; wakeup(P);

}

5. Deadlock & starvation:

Example: Consider a system of two processes , P0 & P1 each accessing two

semaphores ,S & Q, set to the value 1.

P0 P1

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 33

Wait (S) Wait (Q)

Wait (Q) Wait (S)

. .

. .

. .

Signal(S) Signal(Q)

Signal(Q) Signal(S)

 Suppose that P0 executes wait(S), then P1 executes wait(Q). When P0 executes

wait(Q), it must wait until P1 executes signal(Q).Similarly when P1 executes

wait(S), it must wait until P0 executes signal(S). Since these signal operations

cannot be executed, P0 & P1 are deadlocked.

 Another problem related to deadlock is indefinite blocking or starvation, a

situation where a process wait indefinitely within the semaphore. Indefinite

blocking may occur if we add or remove processes from the list associated with

a semaphore in LIFO order.

Types of Semaphores

 Counting semaphore – any positive integer value

 Binary semaphore – integer value can range only between 0

6. Monitors

 A monitor is a synchronization construct that supports mutual exclusion and the

ability to wait /block until a certain condition becomes true.

 A monitor is an abstract datatype that encapsulates data with a set of functions

to operate on the data.

Characteristics of Monitor

 The local variables of a monitor can be accessed only by the local functions.

 A function defined within a monitor can only access the local variables of a

monitor and its formal parameter.

 Only one process may be active within the monitor at a time.

 Syntax of a Monitor

monitor monitor-name

{

// shared variable declarations

procedure body P1 (…) { ….

}

…

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 34

procedure body Pn (…) {……}

{

initialization code

}

}

 To allow a process to wait within the monitor, a condition variable must be

declared as

o condition x, y;

 Two operations on a condition variable:

 x.wait () –a process that invokes the operation is suspended.

 x.signal () –resumes one of the suspended processes(if any)

Schematic view of a monitor- Monitor with condition variables

 Instead of lock-based protection, monitors use a shared condition variable for

synchronization and only two operations wait() and signal() can be applied on

the condition variable.

condition x, y;

x.wait (); // a process that invokes the operation is suspended.

x.signal (); //resumes one of the suspended processes(if any)

The Dining Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The philosophers

share a circular table surrounded by five chairs, each belonging to one philosopher. In

the center of the table is a bowl of rice, and the table is laid with five single chopsticks

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 35

When a philosopher thinks, she does not interact with her colleagues. From time to time,

a philosopher gets hungry and tries to pick up the two chopsticks that are closest to her

(the chopsticks that are between her and her left and right neighbors). A philosopher

may pick up only one chopstick at a time. Obviously, she cannot pick up a chopstick

that is already in the hand of a neighbor. When a hungry philosopher has both her

chopsticks at the same time, she eats without releasing the chopsticks. When she is

finished eating, she puts down both chopsticks and starts thinking again.

Solution to Dining Philosophers Problem

monitor DP

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i)

{ state[i] =

HUNGRY; test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i)

{ state[i] =

THINKING;

// test left and right

neighbors test((i + 4) % 5);

test((i + 1) % 5);

}

void test (int i) {

if ((state[(i + 4) % 5] != EATING)

&& (state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING))

{ state[i] = EATING ;

self[i].signal () ;

} }

initialization_code() {

for (int i = 0; i < 5;

i++) state[i] =

THINKING;

}

}

Each philosopher, before starting to eat, must invoke the operation pickup() followed

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 36

by eating and finally invoke putdown().

 This solution ensures that no two neighbors are eating simultaneously and that

no deadlocks will occur. However, with this solution it is possible for a

philosopher to starve to death.

Implementing a Monitor using a semaphore

 For each condition variable x, we introduce a semaphore x_sem and an integer

variable x_count, both initialized to 0.

 The operation x.wait() is implemented as:

wait(mutex);

…

body of F

...

if (next_count > 0)

signal(next);

else

signal(mutex);

 The operation x.signal() is implemented as:

if (x _count > 0){

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

Resuming Processes within a Monitor

 If several processes are suspended on condition x, then on resuming we have to

determine which process is to be resumed.

 One solution is to use FCFS ordering.

 For priority based sheme, the conditional wait construct is x.wait(c)

where c is the priority number

2.11 Deadlock

Definition: A process requests resources. If the resources are not available at that time

,the process enters a wait state. Waiting processes may never change state again because

the resources they have requested are held by other waiting processes. This situation is

called a deadlock.

A process must request a resource before using it, and must release resource after

using it.

1. Request: If the request cannot be granted immediately then the requesting

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 37

process must wait until it can acquire the resource.

2. Use: The process can operate on the resource

3. Release: The process releases the resource.

2.11.1 Deadlock Characterization

Four Necessary conditions for a deadlock

Mutual exclusion: At least one resource must be held in a non sharable mode. That

is only one process at a time can use the resource. If another process requests that

resource, the requesting process must be delayed until the resource has been released.

Hold and wait: A process must be holding at least one resource and waiting to

acquire additional resources that are currently being held by other processes.

No preemption: Resources cannot be preempted.

Circular wait: P0 is waiting for a resource that is held by P1, P1 is waiting for a

resource that is held by P2...Pn-1.

Resource-Allocation Graph

 It is a Directed Graph with a set of vertices V and set of edges E.

 V is partitioned into two types:

1. nodes P = {p1, p2,..pn}

2. Resource type R ={R1,R2,...Rm}

 Pi -->Rj - request => request edge

 Rj-->Pi - allocated => assignment edge.

 Pi is denoted as a circle and Rj as a square.

 Rj may have more than one instance represented as a dot with in the square.

Sets P,R and E.

P = { P1,P2,P3}

R = {R1,R2,R3,R4}

E= {P1->R1, P2->R3, R1->P2, R2->P1, R3->P3 }

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 38

 Resource instances

One instance of resource type R1, Two instance of resource type R2,One

instance of resource type R3,Three instances of resource type R4.

Process states

Process P1 is holding an instance of resource type R2, and is waiting for an instance

of resource type R1.Resource Allocation Graph with a deadlock

Process P2 is holding an instance of R1 and R2 and is waiting for an instance of

resource type R3.Process P3 is holding an instance of R3.

P1->R1->P2->R3->P3->R2->P1

P2->R3->P3->R2->P2

Methods for handling Deadlocks

1. Deadlock Prevention

2. Deadlock Avoidance

3. Deadlock Detection and Recovery

2.11.2 Deadlock Prevention:

 This ensures that the system never enters the deadlock state.

 Deadlock prevention is a set of methods for ensuring that at least one of the

necessary conditions cannot hold.

 By ensuring that at least one of these conditions cannot hold, we can prevent the

occurrence of a deadlock.

1. Denying Mutual exclusion

 Mutual exclusion condition must hold for non-sharable resources.

 Printer cannot be shared simultaneously shared by prevent processes.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 39

 sharable resource - example Read-only files.

 If several processes attempt to open a read-only file at the same time, they can

be granted simultaneous access to the file.

 A process never needs to wait for a sharable resource.

2. Denying Hold and wait

 Whenever a process requests a resource, it does not hold any other resource.

 One technique that can be used requires each process to request and be allocated

all its resources before it begins execution.

 Another technique is before it can request any additional resources, it must

release all the resources that it is currently allocated.

 These techniques have two main disadvantages :

 First, resource utilization may be low, since many of the resources may

be allocated but unused for a long time.

 We must request all resources at the beginning for both protocols.

starvation is possible.

3. Denying No preemption

 If a Process is holding some resources and requests another resource that cannot

be immediately allocated to it. (that is the process must wait), then all resources

currently being held are preempted.(ALLOW PREEMPTION)

 These resources are implicitly released.

 The process will be restarted only when it can regain its old resources.

4. Denying Circular wait

 Impose a total ordering of all resource types and allow each process to request

for resources in an increasing order of enumeration.

 Let R = {R1,R2,...Rm} be the set of resource types.

 Assign to each resource type a unique integer number.

 If the set of resource types R includes tapedrives, disk drives and printers.

F(tapedrive)=1,

F(diskdrive)=5,

F(Printer)=12.

 Each process can request resources only in an increasing order of enumeration.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 40

2.11.3 Deadlock Avoidance:

 Deadlock avoidance request that the OS be given in advance additional

information concerning which resources a process will request and use

during its life time. With this information it can be decided for each request

whether or not the process should wait.

 To decide whether the current request can be satisfied or must be delayed, a

system must consider the resources currently available, the resources currently

allocated to each process and future requests and releases of each process.

 Safe State

A state is safe if the system can allocate resources to each process in some order

and still avoid a dead lock.

 A deadlock is an unsafe state.

 Not all unsafe states are dead locks

 An unsafe state may lead to a dead lock

 Two algorithms are used for deadlock avoidance namely;

1. Resource Allocation Graph Algorithm - single instance of a resource type.

2. Banker’s Algorithm – several instances of a resource type.

Resource allocation graph algorithm

 Claim edge - Claim edge Pi---> Rj indicates that process Pi may request resource

Rj at some time, represented by a dashed directed edge.

 When process Pi request resource Rj, the claim edge Pi -> Rj is converted to a

request edge.

Similarly, when a resource Rj is released by Pi the assignment edge Rj -> Pi is

reconverted to a claim edge Pi -> Rj

 The request can be granted only if converting the request edge Pi -> Rj to an

assignment edge Rj -> Pi does not form a cycle.

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 41

 If no cycle exists, then the allocation of the resource will leave the system in a

safe state.

 If a cycle is found, then the allocation will put the system in an unsafe state.

Banker's algorithm

 Available: indicates the number of available resources of each type.

 Max: Max[i, j]=k then process Pi may request at most k instances of resource

type Rj

 Allocation : Allocation[i. j]=k, then process Pi is currently allocated K instances

of resource type Rj

 Need : if Need[i, j]=k then process Pi may need K more instances of resource

type Rj

Need [i, j]=Max[i, j]-Allocation[i, j]

Safety algorithm

Initialize work := available and Finish [i]:=false for i=1,2,3 .. n

Find an i such that both

i. Finish[i]=false

ii. Needi<= Work

if no such i exists, goto step 4

3. work :=work+ allocationi;

Finish[i]:=true

goto step 2

4. If finish[i]=true for all i, then the system is in a safe state

Resource Request Algorithm

Let Requesti be the request from process Pi for resources.

 If Requesti<= Needi goto step2, otherwise raise an error condition, since the process

has exceeded its maximum claim.

 If Requesti <= Available, goto step3, otherwise Pi must wait, since the resources

are not available.

 Available := Availabe-Requesti;

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 42

Allocationi := Allocationi + Requesti

Needi := Needi - Requesti;

 Now apply the safety algorithm to check whether this new state is safe or not.

 If it is safe then the request from process Pi can be granted.

2.11.4 Deadlock detection

(i) Single instance of each resource type

 If all resources have only a single instance, then we can define a deadlock detection

algorithm that use a variant of resource-allocation graph called a wait for graph.

Resource Allocation Graph

Wait for Graph

(ii) Several Instance of a resource type

Available : Number of available resources of each type

Allocation : number of resources of each type currently allocated to each process

Request : Current request of each process

CS8493:OPERATING SYSTEM Department of CSE

2020-2021 Jeppiaar Institute of Technology 43

If Request [i,j]=k, then process Pi is requesting K more instances of resource type Rj.

1. Initialize work := available

Finish[i]=false, otherwise finish

[i]:=true

2. Find an index i such that

both

a. Finish[i]=false

b. Requesti<=work

if no such i exists go to step4.

3. Work:=work+allocationi

Finish[i]:=true

goto step2

4. If finish[i]=false

then process Pi is deadlocked

2.11.5 Deadlock Recovery

1. Process Termination

1. Abort all deadlocked processes.

2. Abort one deadlocked process at a time until the deadlock cycle is eliminated.

After each process is aborted , a deadlock detection algorithm must be invoked

to determine where any process is still dead locked.

2. Resource Preemption

Preemptive some resources from process and give these resources to other

processes until the deadlock cycle is broken.

i. Selecting a victim: which resources and which process are to be preempted.

ii. Rollback: if we preempt a resource from a process it cannot continue with

its normal execution. It is missing some needed resource. We must rollback the process

to some safe state, and restart it from that state.

iii. Starvation: How can we guarantee that resources will not always be

preempted from the same process.

	2.1 Process Concept
	 A process is a program in execution.
	Process States:
	Process Control Block
	Fig : Process Control Block

	2.2 Process Scheduling
	Fig : Various Scheduling Queue
	Schedulers
	Medium term Scheduler
	Fig :Addition of Medium term Scheduling to Queuing Diagram Context Switch

	2.3 Operations on Processes
	1. Process Creation
	2. Process Termination
	Cooperating Processes
	Benefits of Cooperating Processes
	Example : Producer – Consumer Problem
	Shared data
	Producer Process

	/* do nothing */
	Consumer process
	/* do nothing */ (1)

	2.4 Interprocess Communication
	Basic Structure:
	1. Direct or indirect communication
	3. Automatic or explicit buffering
	5. Fixed-sized or variable-sized messages
	1. Direct Communication
	2. Indirect Communication
	3. Buffering
	4. Synchronization

	2.5 CPU Scheduling
	CPU-I/O Burst Cycle
	2.5.1 CPU Scheduler
	Preemptive Scheduling
	Non-preemptive Scheduling
	Dispatcher
	2.5.2 CPU Scheduling Algorithms
	 First-Come, First-Served Scheduling
	 Shortest Job First Scheduling
	 Priority Scheduling
	 Round-Robin Scheduling
	 Multilevel Queue Scheduling
	 Multilevel Feedback Queue Scheduling

	2.6 Multiple Processor Scheduling
	2.7 Real-Time Scheduling
	Algorithm Evaluation
	Deterministic Modeling
	Queueing Models

	2.8 Threads
	Benefits of multithreaded programming
	User thread and Kernel threads User threads
	Kernel threads

	2.9 Multithreading models
	1. Many-to-One:
	Many-to-One Model
	One-to-one Model

	2.10 Threading Issues
	1. fork() and exec() system calls :
	2. Thread cancellation:
	3. Signal handling:
	WINDOWS 7 -THREAD AND SMP MANAGEMENT
	The primary data structures of a thread include:

	2.11 Process Synchronization
	1. The Critical-Section Problem
	Requirements to be satisfied for a Solution to the Critical-Section Problem:
	General structure of process Pi General structure of process Pi
	preemptive kernels and non-preemptive kernels.
	Algorithm 2:
	Algorithm 3:

	2. Mute locks
	The deﬁnition of acquire() is as follows:
	Solution to the critical-section problem using mutex locks.
	The deﬁnition of release() is as follows:

	3. Synchronization Hardware:
	Mutual Exclusion with Test-and-Set:
	Mutual Exclusion with Swap:

	4. Semaphores:
	Mutual Exclusion Implementation using semaphore
	Semaphore Implementation
	typedef struct { int value;
	} semaphore;
	wait(S)
	S.value--;
	add this process to S.L; block;
	signal(S)
	S.value++;
	remove a process P from S.L; wakeup(P);
	5. Deadlock & starvation:
	P0 P1
	. .
	. . (1)
	Types of Semaphores
	 Syntax of a Monitor
	{
	Schematic view of a monitor- Monitor with condition variables
	The Dining Philosophers Problem
	Implementing a Monitor using a semaphore
	 The operation x.wait() is implemented as:
	 The operation x.signal() is implemented as:
	Resuming Processes within a Monitor

	2.11 Deadlock
	Resource-Allocation Graph
	Methods for handling Deadlocks
	1. Denying Mutual exclusion
	2. Denying Hold and wait
	3. Denying No preemption
	4. Denying Circular wait
	 Safe State
	Resource allocation graph algorithm
	Banker's algorithm
	Resource Allocation Graph
	(ii) Several Instance of a resource type
	2. Resource Preemption

