
CS8492 /Database Management Systems

2017
Regulations

 UNIT II DATABASE DESIGN
Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping –

Functional Dependencies – Non-loss Decomposition – First, Second, Third Normal Forms, Dependency

Preservation – Boyce/Codd Normal Form – Multi-valued Dependencies and Fourth Normal Form –

Join Dependencies and Fifth Normal Form
DATABASE DESIGN

A well-designed database shall:

 Eliminate Data Redundancy: the same piece of data shall not be stored in more than one place. This is because duplicate

data not only waste storage spaces but also easily lead to inconsistencies.

 Ensure Data Integrity and Accuracy

Entity-Relationship Data Model

 Classical, popular conceptual data model
 First introduced (mid 70’s) as a (relatively minor) improvement to the relational model: pictorial diagrams

are easier to read than relational database schemas
 Then evolved as a popular model for the first conceptual representation of data structures in the process

of database design
ER Model: Entity and Entity Set

Considering the above example, Student is an entity, Teacher is an entity, similarly, Class, Subjectetc are also
entities.

An Entity is generally a real-world object which has characteristics and holds relationships in a DBMS.

If a Student is an Entity, then the complete dataset of all the students will be the Entity Set

ER Model: Attributes
If a Student is an Entity, then student's roll no., student's name, student's age, student's gender etc will be
its attributes.

An attribute can be of many types, here are different types of attributes defined in ER database model:
1. Simple attribute: The attributes with values that are atomic and cannot be broken down further are

simple attributes. For example, student's age.
2. Composite attribute: A composite attribute is made up of more than one simple attribute. For

example, student's address will contain, house no., street name, pincode etc.
3. Derived attribute: These are the attributes which are not present in the whole database management

system, but are derived using other attributes. For example, average age of students in a class.
4. Single-valued attribute: As the name suggests, they have a single value.

5. Multi-valued attribute: And, they can have multiple values.

ER Model: Relationships

When an Entity is related to another Entity, they are said to have a relationship. For example, A ClassEntity is
related to Student entity, because students study in classes, hence this is a relationship.

Depending upon the number of entities involved, a degree is assigned to relationships.

For example, if 2 entities are involved, it is said to be Binary relationship, if 3 entities are involved, it is said to
be Ternary relationship, and so on.

 Page 1

CS8492 /Database Management Systems 2017 Regulations

Working with ER Diagrams
ER Diagram is a visual representation of data that describes how data is related to each other. In ER Model, we
disintegrate data into entities, attributes and setup relationships between entities, all this can be represented visually
using the ER diagram.

Components of ER Diagram
Entitiy, Attributes, Relationships etc form the components of ER Diagram and there are defined symbols and
shapes to represent each one of them.
Let's see how we can represent these in our ER Diagram.
Entity

Simple rectangular box represents an Entity.

Relationships between Entities - Weak and Strong

Rhombus is used to setup relationships between two or more entities.

Attributes for any Entity

Ellipse is used to represent attributes of any entity. It is connected to the entity.

Weak Entity

A weak Entity is represented using double rectangular boxes. It is generally connected to another entity.

Key Attribute for any Entity

To represent a Key attribute, the attribute name inside the Ellipse is underlined.

 Page 2

CS8492 /Database Management Systems 2017 Regulations

Derived Attribute for any Entity
Derived attributes are those which are derived based on other attributes, for example, age can be derived from date
of birth.

To represent a derived attribute, another dotted ellipse is created inside the main ellipse.

Multivalued Attribute for any Entity

Double Ellipse, one inside another, represents the attribute which can have multiple values.

Composite Attribute for any Entity

A composite attribute is the attribute, which also has attributes.

ER Diagram: Entity
An Entity can be any object, place, person or class. In ER Diagram, an entity is represented using rectangles.
Consider an example of an Organisation- Employee, Manager, Department, Product and many more can be taken
as entities in an Organisation.

The yellow rhombus in between represents a relationship.

ER Diagram: Key Attribute
Key attribute represents the main characteristic of an Entity. It is used to represent a Primary key. Ellipse with
the text underlined, represents Key Attribute.

 Page 3

CS8492 /Database Management Systems 2017 Regulations

ER Diagram: Binary Relationship

Binary Relationship means relation between two Entities. This is further divided into three types.

One to One Relationship

This type of relationship is rarely seen in real world.

The above example describes that one student can enroll only for one course and a course will also have only
one Student. This is not what you will usually see in real-world relationships.

One to Many Relationship
The below example showcases this relationship, which means that 1 student can opt for many courses, but a
course can only have 1 student. Sounds weird! This is how it is.

Many to One Relationship
It reflects business rule that many entities can be associated with just one entity. For example, Student enrolls for
only one Course but a Course can have many Students.

Many to Many Relationship

The above diagram represents that one student can enroll for more than one courses. And a course can have
more than 1 student enrolled in it.

 Page 4

CS8492 /Database Management Systems 2017 Regulations

ER Diagram: Recursive Relationship

When an Entity is related with itself it is known as Recursive Relationship.

ER Diagram: Ternary Relationship

Relationship of degree three is called Ternary relationship.

A Ternary relationship involves three entities. In such relationships we always consider two entites together and
then look upon the third.

For example, in the diagram above, we have three related entities, Company, Product and Sector. To understand the

relationship better or to define rules around the model, we should relate two entities and then derive the third one. A
Company produces many Products/ each product is produced by exactly one company. A Company operates in
only one Sector / each sector has many companies operating in it.
Considering the above two rules or relationships, we see that although the complete relationship involves three
entities, but we are looking at two entities at a time.

The Enhanced ER Model
As the complexity of data increased in the late 1980s, it became more and more difficult to use the traditional ER
Model for database modelling. Hence some improvements or enhancements were made to the existing ER Model to
make it able to handle the complex applications better.
Hence, as part of the Enhanced ER Model, along with other improvements, three new concepts were added to the
existing ER Model, they were:

1. Generalization

2. Specialization
3. Aggregration

Generalization

Generalization is a bottom-up approach in which two lower level entities combine to form a higher level entity. In
generalization, the higher level entity can also combine with other lower level entities to make further higher level
entity.

It's more like Superclass and Subclass system, but the only difference is the approach, which is bottom-up. Hence,
entities are combined to form a more generalised entity, in other words, sub-classes are combined to form a super-

 Page 5

CS8492 /Database Management Systems 2017 Regulations

class.

For example, Saving and Current account types entities can be generalised and an entity with name Account can be
created, which covers both.

Specialization

Specialization is opposite to Generalization. It is a top-down approach in which one higher level entity can be
broken down into two lower level entity. In specialization, a higher level entity may not have any lower-level entity
sets, it's possible.

Aggregation

Aggregation is a process when relation between two entities is treated as a single entity.

In the diagram above, the relationship between Center and Course together, is acting as an Entity, which is in
relationship with another entity Visitor. Now in real world, if a Visitor or a Student visits a Coaching Center, he/she
will never enquire about the center only or just about the course, rather he/she will ask enquire about both.

ER Model to Relational Model

ER Model can be represented using ER Diagrams which is a great way of designing and representing the database
design in more of a flow chart form.

 Page 6

CS8492 /Database Management Systems 2017 Regulations

It is very convenient to design the database using the ER Model by creating an ER diagram and later on converting
it into relational model to design your tables.
Not all the ER Model constraints and components can be directly transformed into relational model, but an
approximate schema can be derived.
Few examples of ER diagrams and convert it into relational model schema, hence creating tables in RDBMS.

Entity becomes Table

Entity in ER Model is changed into tables, or we can say for every Entity in ER model, a table is created in
Relational Model.
And the attributes of the Entity gets converted to columns of the table.
And the primary key specified for the entity in the ER model, will become the primary key for the table in
relational model.

For example, for the below ER Diagram in ER Model,

Atablewithname Student will be createdinrelationalmodel,whichwillhave4

columns, id, name, age, address and id will be the primary key for this table.

Table:Student

 id name age address

Relationship becomes a Relationship Table

In ER diagram, we use diamond/rhombus to represent a relationship between two entities. In Relational model
we create a relationship table for ER Model relationships too.

In the ER diagram below, we have two entities Teacher and Student with a relationship between them.

As discussd above, entity gets mapped to table, hence we will create table for Teacher and a table for Student with
all the attributes converted into columns.

Now, an additional table will be created for the relationship, for example StudentTeacher or give it any name you
like. This table will hold the primary key for both Student and Teacher, in a tuple to describe the relationship,
which teacher teaches which student.

If there are additional attributes related to this relationship, then they become the columns for this table, like subject

 Page 7

CS8492 /Database Management Systems 2017 Regulations

name.

Also proper foreign key constraints must be set for all the tables.

Functional Dependency

The functional dependency is a relationship that exists between two attributes. It typically exists between the
primary key and non-key attribute within a table.

X → Y

The left side of FD is known as a determinant, the right side of the production is known as a dependent.
For example:

Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address.
Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table because if we know the

Emp_Id, we can tell that employee name associated with it. Functional dependency can be written as:

Emp_Id → Emp_Name

Types of Functional dependency

Trivial functional dependency

o A → B has trivial functional dependency if B is a subset of A. o
The following dependencies are also trivial like: A → A, B → B

Example:
Consider a table with two columns Employee_Id and Employee_Name.

{Employee_id, Employee_Name} → Employee_Id is a trivial functional dependency as
Employee_Id is a subset of {Employee_Id, Employee_Name}.
3. Also, Employee_Id → Employee_Id and Employee_Name → Employee_Name are trivial dependencies too.

Non-trivial functional dependency

A → B has a non-trivial functional dependency if B is not a subset of A.

When A intersection B is NULL, then A → B is called as complete non-trivial.

Example:

ID → Name,

Name → DOB

Normalization of Database

Database Normalization is a technique of organizing the data in the database. Normalization is a systematic

 Page 8

CS8492 /Database Management Systems 2017 Regulations

approach of decomposing tables to eliminate data redundancy(repetition) and undesirable characteristics like

Insertion, Update and Deletion anomalies. It is a multi-step process that puts data into tabular form, removing
duplicated data from the relation tables.

Normalization is used for mainly two purposes,

 Eliminating reduntant(useless) data.
 Ensuring data dependencies make sense i.e data is logically stored.

Problems Without Normalization

If a table is not properly normalized and have data redundancy then it will not only eat up extra memory space but
will also make it difficult to handle and update the database, without facing data loss. Insertion, Updation and
Deletion Anomalies are very frequent if database is not normalized. To understand these anomalies let us take an
example of a Student table.

rollno

name

branch

hod

office_tel

 401 Akon CSE Mr. X 53337

402

Bkon

CSE

Mr. X

53337

 403 Ckon CSE Mr. X 53337

 404 Dkon CSE Mr. X 53337

In the table above, we have data of 4 Computer Sci. students. As we can see, data for the fields branch, hod(Head
of Department) and office_tel is repeated for the students who are in the same branch in the college, this is Data
Redundancy.

Insertion Anomaly
Suppose for a new admission, until and unless a student opts for a branch, data of the student cannot be inserted, or
else we will have to set the branch information as NULL.
Also, if we have to insert data of 100 students of same branch, then the branch information will be repeated for all
those 100 students.
These scenarios are nothing but Insertion anomalies.

Updation Anomaly
What if Mr. X leaves the college? or is no longer the HOD of computer science department? In that case all the
student records will have to be updated, and if by mistake we miss any record, it will lead to data inconsistency.
This is Updation anomaly.

Deletion Anomaly

In our Student table, two different informations are kept together, Student information and Branch information.

Hence, at the end of the academic year, if student records are deleted, we will also lose the branch information.

This is Deletion anomaly.

 Page 9

CS8492 /Database Management Systems 2017 Regulations

Normalization Rule

Normalization rules are divided into the following normal forms:
1. First Normal Form

2. Second Normal Form

3. Third Normal Form

4. BCNF

5. Fourth Normal Form
6. Fifth Normal Form

First Normal Form (1NF)

For a table to be in the First Normal Form, it should follow the following 4 rules:
1. It should only have single(atomic) valued attributes/columns.
2. Values stored in a column should be of the same domain

3. All the columns in a table should have unique names.

4. And the order in which data is stored, does not matter.

Rules for First Normal Form

The first normal form expects you to follow a few simple rules while designing your database, and they are:

Rule 1: Single Valued Attributes
Each column of your table should be single valued which means they should not contain multiple values. We
will explain this with help of an example later, let's see the other rules for now.

Rule 2: Attribute Domain should not change
This is more of a "Common Sense" rule. In each column the values stored must be of the same kind or type.
For example: If you have a column dob to save date of births of a set of people, then you cannot or you must

not save 'names' of some of them in that column along with 'date of birth' of others in that column. It should

hold only 'date of birth' for all the records/rows.

Rule 3: Unique name for Attributes/Columns
This rule expects that each column in a table should have a unique name. This is to avoid confusion at the time
of retrieving data or performing any other operation on the stored data.
If one or more columns have same name, then the DBMS system will be left confused.

Rule 4: Order doesn't matters

This rule says that the order in which you store the data in your table doesn't matter.

EXAMPLE
Create a table to store student data which will have student's roll no., their name and the name of subjects
they have opted for.
Here is the table, with some sample data added to it.

roll_no name subject

101 Akon OS, CN

103 Ckon Java

102 Bkon C, C++

The table already satisfies 3 rules out of the 4 rules, as all our column names are unique, we have stored data
in the order we wanted to and we have not inter-mixed different type of data in columns.

 Page 10

CS8492 /Database Management Systems 2017 Regulations

But out of the 3 different students in our table, 2 have opted for more than 1 subject. And we have stored the
subject names in a single column. But as per the 1st Normal form each column must contain atomic value. It's
very simple, because all we have to do is break the values into atomic values.
Here is our updated table and it now satisfies the First Normal Form.

roll_no name subject

101 Akon OS

101 Akon CN

103 Ckon Java

102 Bkon C

102 Bkon C++

By doing so, although a few values are getting repeated but values for the subject column are now atomic for
each record/row. Using the First Normal Form, data redundancy increases, as there will be many columns with
same data in multiple rows but each row as a whole will be unique.

Second Normal Form (2NF)

For a table to be in the Second Normal Form,
1. It should be in the First Normal form.

2. And, it should not have Partial Dependency.

Dependency

Let's take an example of a Student table with columns student_id, name,
reg_no(registration number), branch and address(student's home address).

student_
name

reg_n branc addre

id o h ss

In this table, student_id is the primary key and will be unique for every row, hence we can use student_id to
fetch any row of data from this table
Even for a case, where student names are same, if we know the student_id we can easily fetch the correct
record.

 student_id name reg_no branch address

 10 Akon 07-WY CSE Kerala

 11 Akon 08-WY IT Gujarat

Hence we can say a Primary Key for a table is the column or a group of columns(composite key) which
can uniquely identify each record in the table.

I can ask from branch name of student with student_id 10, and I can get it. Similarly, if I ask for name of

student with student_id 10 or 11, I will get it. So all I need is student_id and every other column depends on it,
or can be fetched using it.This is Dependency and we also call it Functional Dependency.

Partial Dependency

Now that we know what dependency is, we are in a better state to understand what partial dependency is.

For a simple table like Student, a single column like student_id can uniquely identfy all the records in a table.

But this is not true all the time. So now let's extend our example to see if more than 1 column together can act

 Page 11

CS8492 /Database Management Systems 2017 Regulations

as a primary key.
Let's create another table for Subject, which will have subject_id and subject_name fields and subject_id will
be the primary key.

subject_i subject_nam

d e
1 Java
2 C++
3 Php

Now we have a Student table with student information and another table Subject for storing subject
information.
Let's create another table Score, to store the marks obtained by students in the respective subjects. We will also
be saving name of the teacher who teaches that subject along with marks.

score_id

student_id

 subject_i
marks

teacher

d

1 10 1 70 Java Teacher

 2 10 2 75 C++ Teacher

3 11 1 80 Java Teacher

In the score table we are saving the student_id to know which student's marks are these and subject_id to
know for which subject the marks are for.

Together, student_id + subject_id forms a Candidate Key which can be the Primary key.

To get me marks of student with student_id 10, can you get it from this table? No, because you don't know for
which subject. And if I give you subject_id, you would not know for which student. Hence we need student_id
+ subject_id to uniquely identify any row.

But where is Partial Dependency?

Now if you look at the Score table, we have a column names teacher which is only dependent on the subject,
for Java it's Java Teacher and for C++ it's C++ Teacher & so on.

Now as we just discussed that the primary key for this table is a composition of two columns which is
student_id & subject_id but the teacher's name only depends on subject, hence the subject_id, and has nothing
to do with student_id.

This is Partial Dependency, where an attribute in a table depends on only a part of the primary key and not on
the whole key.

How to remove Partial Dependency?

There can be many different solutions for this, but out objective is to remove teacher's name from Score table.
The simplest solution is to remove columns teacher from Score table and add it to the Subject table. Hence, the
Subject table will become:

 subject_id subject_name teacher

 1 Java Java Teacher

 2 C++ C++ Teacher

 3 Php Php Teacher

 Page 12

CS8492 /Database Management Systems 2017 Regulations

And our Score table is now in the second normal form, with no partial dependency.

score_ student_ subject_ mar

id id id ks

1 10 1 70

2 10 2 75

3 11

Third Normal Form (3NF)

A table is said to be in the Third Normal Form when,

1. It is in the Second Normal form.

2. And, it doesn't have Transitive Dependency.
So let's use the same example, where we have 3 tables, Student, Subject and Score.

Student Table

 student_i
name

reg_no

branch

address

d

10 Akon 07-WY CSE Kerala

 11 Akon 08-WY IT Gujarat

12 Bkon 09-WY IT Rajasthan

Subject Table

subject_id subject_name teacher

1 Java Java Teacher

2 C++ C++ Teacher

3 Php Php Teacher

Score Table
In the Score table, we need to store some more information, which is the exam name and total marks, so
let's add 2 more columns to the Score table.

score_id

 student_i subject_i
marks

d

d

1 10 1 70

 2 10 2 75

3 11 1 80

Transitive Dependency
With exam_name and total_marks added to our Score table, it saves more data now. Primary key for the Score

table is a composite key, which means it's made up of two attributes or columns → student_id + subject_id.

The new column exam_name depends on both student and subject. For example, a mechanical engineering

student will have Workshop exam but a computer science student won't. And for some subjects you have

Practical exams and for some you don't. So we can say that exam_name is dependent on both student_id and

subject_id.
And what about our second new column total_marks? Does it depend on our Score table's primary key?

 Page 13

CS8492 /Database Management Systems 2017 Regulations

Well, the column total_marks depends on exam_name as with exam type the total score changes. For example,
practicals are of less marks while theory exams are of more marks.
But, exam_name is just another column in the score table. It is not a primary key or even a part of the primary
key, and total_marks depends on it.
This is Transitive Dependency. When a non-prime attribute depends on other non-prime attributes rather than
depending upon the prime attributes or primary key.

How to remove Transitive Dependency
Again the solution is very simple. Take out the columns exam_name and total_marks from Score table and put
them in an Exam table and use the exam_id wherever required.

Score Table: In 3rd Normal Form

score_id

 student_i subject_
marks

exam_id

d

id

The new Exam table

exam_id

exam_name
 total_mark

s

1 Workshop 200

 2 Mains 70

3 Practicals 30

Advantage of removing Transitive Dependency

The advantage of removing transitive dependency is,
 Amount of data duplication is reduced.

 Data integrity achieved.

Boyce and Codd Normal Form (BCNF)
Boyce and Codd Normal Form is a higher version of the Third Normal form. This form deals with certain type
of anomaly that is not handled by 3NF. A 3NF table which does not have multiple overlapping candidate keys
is said to be in BCNF. For a table to be in BCNF, following conditions must be satisfied:
 R must be in 3rd Normal Form
 and, for each functional dependency (X → Y), X should be a super Key.In simple words, it means, that

for a dependency A → B, A cannot be a non-prime attribute, if B is a prime attribute.

Example

College enrolment table with columns student_id, subject and professor.

student_id subject professor

101 Java P.Java

101 C++ P.Cpp

102 Java P.Java2

103 C# P.Chash

104 Java P.Java

In the table above:
One student can enroll for multiple subjects. For example, student with student_id 101, has opted for subjects -
Java & C++
 For each subject, a professor is assigned to the student.
 And, there can be multiple professors teaching one subject like Java.
What do you think should be the Primary Key?

 Page 14

CS8492 /Database Management Systems 2017 Regulations

Well, in the table above student_id, subject together form the primary key, because

using student_id and subject, we can find all the columns of the table.

One more important point to note here is, one professor teaches only one subject, but one subject may have

two different professors.

Hence, there is a dependency between subject and professor here, where subject depends on the professor

name.

This table satisfies the 1st Normal form because all the values are atomic, column names are unique and all

the values stored in a particular column are of same domain.

This table also satisfies the 2nd Normal Form as there is no Partial Dependency.

And, there is no Transitive Dependency, hence the table also satisfies the 3rd Normal Form.

But this table is not in Boyce-Codd Normal Form.

Why this table is not in BCNF?
In the table above, student_id, subject form primary key, which means subject column is a prime attribute.

But, there is one more dependency, professor → subject.

And while subject is a prime attribute, professor is a non-prime attribute, which is not allowed by

BCNF. How to satisfy BCNF?

To make this relation(table) satisfy BCNF, we will decompose this table into two tables, student

table and professor table.

Below we have the structure for both the tables.

Student Table

student_id p_id

101 1

101 2

Professor Table

p_id professor subject

1 P.Java Java

2 P.Cpp C++

And now, this relation satisfy Boyce-Codd Normal Form.

Fourth Normal Form (4NF)

A table is said to be in the Fourth Normal Form when,

1. It is in the Boyce-Codd Normal Form.
2. And, it doesn't have Multi-Valued Dependency.

Multi-valued Dependency

A table is said to have multi-valued dependency, if the following conditions are true,

1. For a dependency A → B, if for a single value of A, multiple value of B exists, then the table may

have multi-valued dependency.
2. Also, a table should have at-least 3 columns for it to have a multi-valued dependency.
3. And, for a relation R(A,B,C), if there is a multi-valued dependency between, A and B, then B and C

should be independent of each other.

If all these conditions are true for any relation(table), it is said to have multi-valued dependency.

 Page 15

CS8492 /Database Management Systems 2017 Regulations

Example

Below we have a college enrolment table with columns s_id, course and hobby.

s_id

 cours
hobby

e

1

 Scienc
Cricket

e

 1 Maths Hockey

 2 C# Cricket

 2 Php Hockey

From the table above, student with s_id 1 has opted for two courses, Science and Maths, and has two

hobbies, Cricket and Hockey.

You must be thinking what problem this can lead to, right?

Well the two records for student with s_id 1, will give rise to two more records, as shown below, because for

one student, two hobbies exists, hence along with both the courses, these hobbies should be specified.

s_id course hobby

1 Science Cricket

1 Maths Hockey

1 Science Hockey

1 Maths Cricket

And, in the table above, there is no relationship between the columns course and hobby. They are independent

of each other.

So there is multi-value dependency, which leads to un-necessary repetition of data and other anomalies as

well.

How to satisfy 4th Normal Form?

To make the above relation satify the 4th normal form, we can decompose the table into 2 tables.

CourseOpted Table

s_id course

1 Science

1 Maths

2 C#

2 Php

Hobbies Table,

s_id hobby

1 Cricket

1 Hockey

2 Cricket

2 Hockey

Now this relation satisfies the fourth normal form.

A table can also have functional dependency along with multi-valued dependency. In that case, the

functionally dependent columns are moved in a separate table and the multi-valued dependent columns are

moved to separate tables.

 Page 16

CS8492 /Database Management Systems 2017 Regulations

Fifth Normal Form (5NF)

A database is said to be in 5NF, if and only if,

1. It's in 4NF
2. If we can decompose table further to eliminate redundancy and anomaly, and when we re-join the

decomposed tables by means of candidate keys, we should not be losing the original data or any new

record set should not arise. In simple words, joining two or more decomposed table should not lose
records nor create new records.

What is Join Dependency
If a table can be recreated by joining multiple tables and each of this table have a subset of the attributes of the

table, then the table is in Join Dependency. It is a generalization of Multivalued DependencyJoin Dependency
can be related to 5NF, wherein a relation is in 5NF, only if it is already in 4NF and it cannot be decomposed
further.

Example
<Employee>

EmpName EmpSkills EmpJob (Assigned Work)

Tom Networking EJ001

Harry Web Development EJ002

Katie Programming EJ002

The above table can be decomposed into the following three tables; therefore it is not in 5NF:

<EmployeeSkills>

 EmpName EmpSkills

 Tom Networking

 Harry Web Development

 Katie Programming

<EmployeeJob>

 EmpName EmpJob

 Tom EJ001

Harry EJ002

 Katie EJ002

<JobSkills>

 EmpSkills EmpJob

 Networking EJ001

 Web Development EJ002

 Programming EJ002

Our Join Dependency:

 {(EmpName, EmpSkills), (EmpName, EmpJob), (EmpSkills, EmpJob)}

 Page 17

CS8492 /Database Management Systems 2017 Regulations

The above relations have join dependency, so they are not in 5NF. That would mean that a join relation of the
above three relations is equal to our original relation <Employee>.

FIFTH NORMAL FORM EXAMPLE
Consider an example of different Subjects taught by different lecturers and the lecturers taking classes
for different semesters.
Note: Please consider that Semester 1 has Mathematics, Physics and Chemistry and Semester 2 has
only Mathematics in its academic year!!

In above table, Rose takes both Mathematics and Physics class for Semester 1, but she does not take Physics

class for Semester 2. In this case, combination of all these 3 fields is required to identify a valid data. Imagine

we want to add a new class - Semester3 but do not know which Subject and who will be taking that subject.

We would be simply inserting a new entry with Class as Semester3 and leaving Lecturer and subject as NULL.

As we discussed above, it's not a good to have such entries. Moreover, all the three columns together act as a

primary key, we cannot leave other two columns blank!
Hence we have to decompose the table in such a way that it satisfies all the rules till 4NF and when join them

by using keys, it should yield correct record. Here, we can represent each lecturer's Subject area and their
classes in a better way. We can divide above table into three - (SUBJECT, LECTURER), (LECTURER,

CLASS), (SUBJECT, CLASS)

Now, each of combinations is in three different tables. If we need to identify who is teaching which subject to
which semester, we need join the keys of each table and get the result.
For example, who teaches Physics to Semester 1, we would be selecting Physics and Semester1 from table 3

above, join with table1 using Subject to filter out the lecturer names. Then join with table2 using Lecturer to

get correct lecturer name. That is we joined key columns of each table to get the correct data. Hence there is
no lose or new data - satisfying 5NF condition.

 Page 18

