UNIT-I
Two DIMENSIONAL RANDOM VARIABLE
Jet'S' be see Sample
Space Jet
$$X = X(S)$$
 and $Y = Y(S)$
be the two functions each assigning
a seal number to each outcome.
SEES. Then (X,Y) is a two dimensional
Plandom Vasiable.
Note:
The two grandom Variables of
 (X,Y) are said to be independent
ib'
 $P[x = xi/Y = yj] = P[x = xi) P(Y = yj)$
 $P_{ij} = P_{i} \times P_{j}$
Poblems based on marginal
distribution
I. From the following joint distribution
of x and y. Find the warginal
distribution:
 $\frac{1}{Y = 0}$ $\frac{1}{2}$ $\frac{3}{480}$

$$P[x=a] = P(0, 0) + P(0, 1) + P(0, a)$$

$$P[x=a] = P(0, 0) + P(1, a) + P(1, a)$$

$$P[x=1] = P(1, 0) + P(1, a) + P(1, a)$$

$$P[x=a] = P(a, 0) + P(a, 1) + P(a, a)$$

$$= \frac{3}{ab}$$

$$P[x=a] = P(a, 0) + P(a, 1) + P(a, a)$$

$$= \frac{3}{ab}$$

$$P[x=a] = P(a, 0) + P(1, 0] + P(a, a)$$

$$= \frac{3}{ab}$$

$$P[Y=a] = P(0, 1) + P(1, 1) + P(a, 1)$$

$$= \frac{3}{ab} + \frac{3}{ab}$$

$$P[Y=a] = P(0, 1) + P(1, 1) + P(a, 1)$$

$$= \frac{3}{ab} + \frac{3}{ab}$$

$$P[Y=a] = P(0, a) + P(a, a) + P(a, a)$$

$$= \frac{1}{b}$$

$$P[Y=a] = P(0, a) + P(a, a) + P(a, a)$$

The marginal distribution of x s y an

$$\frac{\sqrt{x}}{\sqrt{x}} \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} \frac{2}{\sqrt{x}} \frac{1}{\sqrt{x}} \frac{3}{\sqrt{x}} \frac{3}{\sqrt{x}} \frac{3}{\sqrt{x}} \frac{3}{\sqrt{x}} \frac{1}{\sqrt{x}} \frac{3}{\sqrt{x}} \frac{3}{\sqrt{x}} \frac{3}{\sqrt{x}} \frac{3}{\sqrt{x}} \frac{3}{\sqrt{x}} \frac{1}{\sqrt{x}} \frac{3}{\sqrt{x}} \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} \frac{3}{\sqrt{x}} \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}}$$

$$P(2,1) = k(2(2)+3(2)) = 17k$$

$$P(2,2) = k(2(2)+3(2)) = 10k$$

$$P(2/3) = k(2(2)+3(3)) = 13k$$

$$P(2/3) = k(2(2)+3(2)) = k(2(2)+3(2)) = 12k$$

$$P(2/3) = k(2(2)+3(2)) = k(2(2)+3(2)) = 12k$$

$$P(2/3) = k(2(2)+3(2)) = 12k$$

$$P(2/3) = k(2(2)+3(2)) = 12k$$

$$P(2/3) = k(2(2)+3(2$$

Biobability distribution of X+Y (16) $X + Y = P_{xobability}$ $1 = P(o_{11}) = 3f_{12}$ $\frac{2}{2T} = \frac{11}{2T} = \frac{2}{2T} = \frac{1}{2} =$ $P(a_{11}) + P(1_{1}a) + P(0_{1}3) = \frac{1}{12} + \frac{1}{12} + \frac{9}{12} = \frac{24}{12}$ 9 9 (2,3) + P(1,3) = $\frac{10}{72} + \frac{11}{72} = \frac{21}{72}$ 5 P(2,3) = 13 - 31 0 B Problems based on conditional. AP distribution? From the following table for by Variato 3. (4:2)9 distribution (X,Y). Find (i) $P(x \leq 1)$ 72 × 57 $(ii) P(Y \leq 3)$ $(iii) P(X \leq 1, Y \leq 3)$ 1 - - X (iv) PCXE1/YE3) W P(YS37XS1) PD Inviprom (Vi) P(X+Y 54) 6. 9 5 2 3 1 32 2 32 0 0 0 2 32 3 0 32 16 1/8 18 18 16 1/8 Your Ky to 12/64 1/32 2 1/32

Solution;

$$\frac{\sqrt{16}}{\sqrt{16}} \frac{1}{\sqrt{16}} \frac$$

(iv)
$$P(x \in I \mid y \in 3) = \frac{P(x \in I) \cap P(y \leq 3)}{P(y \leq 3)}$$

 $P(y \leq 3)$
 $P(y \leq 3)$
 $P(y \leq 3) = \frac{P(x \leq 1) \cap P(y \leq 3)}{P(x \leq 1)}$
 $P(x \leq 1) = \frac{P(y \leq 3 \cap x \leq 1)}{P(x \leq 1)}$
 $P(x \leq 1)$
 $= \frac{Q/3Q}{T/Q}$
(v) $P(y \leq 3 \mid x \leq 1) = P(y \leq 3 \cap x \leq 1)$
 $P(x \leq 1)$
 $= \frac{Q/3Q}{T/Q}$
(v) $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + y \leq 4) = P(x + 3 \cap x \leq 1)$
 $P(x + 3 \cap x \geq 1)$

A. The joint poobability mass function of
x and Y is

$$\frac{4+0}{0} \frac{1}{10} \frac{2}{0.06} \frac{1}{0.08} \frac{1}{0.30}$$
Find the marginal distribution function
of x 2 Y. Also $P(x \leq W, Y \leq 1)$ and check
ib x and Y are in dependent.
Solution: NOP of x 2 Y

$$\frac{1}{2} \frac{0}{0.06} \frac{1}{0.38} \frac{1}{0.32} \frac{1}{0.08} \frac{1}{0.38} \frac{1}{0$$

E. Jaint Backability clistribution function
for continuous scandom variable

$$F[x,y] = \iint f(x,y) dx dy$$
.
 $\iint f f(x,y) = \iint f(x,y) dx dy$.
 $\iint f f(x,y) dx dy = 1$
Magginal distribution functions.
 $F_x(x) = \iint f f(x,y) dy dx$.
 $F_x(x) = \iint f f(x,y) dy dx$.
 $F_y(y) = \iint f f_{xy}(x,y) dx dy$.
Joint Paobability Counsily function:
 $f_{xy}(x,y) = \frac{\partial^2 F[x,y]}{\partial x \partial y}$.
Marginal Paobability dansity function
 $f(x) = f_x(x) = \int f_{xy}(x,y) dy$
 $f(y) = f_y(y) = \int f_{xy}(x,y) dy$

NO

Conditional probability dansity function

$$f(y|x) = \frac{f(x,y)}{f(x)}, \quad f(x) > 0$$

$$f(x|y) = \frac{f(x,y)}{f(y)}, \quad f(y) > 0.$$
5) Show that the function $f(x,y) =$

$$f(x,y) = \begin{cases} \frac{2}{5}, (3x+3y), \quad 0 < x < 1, \quad 0 < y < 1 \\ 0, \quad 0 \text{ thermalize}. \end{cases}$$
Find JDF, $of + x < x > y$
Solution:
(i) $f(x,y) \ge 0$ in $0 \le x \cdot y \le 1$
(ii) $\int f(x,y) \ dx \ dy.$

$$= \frac{1}{5} \int \left[\frac{2}{5}, (3x+3y), \ dx \ dy.$$

$$= \frac{2}{5} \int \left[\frac{2}{5}, \frac{1}{5}, \frac{$$

b. The Joint p.d.f of sandom Valiable

$$x$$
 and y is given by
 $f(x,y) = kxy e^{-(x^2+y^2)}$
Find the Value of k . and prove
also that x and y are independent
Solution:
 $F[x,y] = kxy e^{-(x^2+y^2)}$
 $\int \int kxy e^{-(x^2+y^2)} dx dy = 1$
 ∞
 $k \int x e^{-(x^2o)} = dx dy = 1$
 $k \int x e^{-dx} \int y e^{-y^2} dy = 1$
 $k = 1$
 $k = 1$
 $k = 1$
 $k = 1$
 $f(x) + f(y) = f(x,y)$
 $f(x) = f_x(x) = \int f(x,y) dy$
 $= \int kxy e^{-(x^2+y^2)} dy$

$$= 4 x e^{x} \int y e^{y} dy$$

$$= 4 x e^{x} \int \frac{1}{x} = \frac{1}{x} x e^{x} \frac{1}{x} \frac{1}{x}$$

$$f(x) = 2x e^{x^{4}}$$

$$f(y) = 5y(y) = \int f(x,y) dx$$

$$= \int x x y e^{-(x^{2}+y^{4})} dx$$

$$= \int y e^{y} \int x e^{-dx}$$

$$= 4 y e^{y} \int x e^{-dx}$$

$$f(x) = 2x e^{x}$$

$$f(x) = 2x e^{x}$$

$$f(x) = 2x e^{x}$$

$$f(x) = 2x e^{x}$$

$$= 4 x y e^{y}$$

$$= f(x,y)$$

$$x \perp y \quad ax \quad independent$$

$$= (xy)$$

T. Let
$$x$$
 and y have JDF,
 $J(x,y) = \mathbb{Z}^{d}$ $0 \le x \le y \le 1 \cdot F$ ind the
MDF. Find the CDF $of(Y/x=x)$
Solution:
M.D.S of x is
 $J_x(x) = f(x) = \int f(x,y) dy$
 $= \int a dy$.
 $= \partial [g]_2$
 $f(x) = a [1-x]$
M.d.f of y .
 $\int y(y) = f(g) = \int f(x,y) dx$
 $= a [x]_0^{d}$
 $= a [x]_0^{d}$
 $= a [x]_0^{d}$
 $f(y|z) = \frac{f(x,y)}{f(x)}$
 $\int (y|z) = \frac{f(x,y)}{f(x)}$
 $= \frac{d}{a(1-x)}$
 $= \frac{1}{2}$

~

8 The jdf of the grandom Vasiable x and
Y hs given by

$$f(x,y) = \begin{cases} 8xy & 0 < x < 1, \\ 0 < y < x \\ 0 & 0 < y < x \\ 0 & 0 & 0 < y < x \\ 0 & 0 & 0 & 0 < y < x \\ 0 & 0 & 0 & 0 & 0 \\ 1000 & y & (y) & 0 & 0 & 0 \\ 1000 & y & (y) & 0 & 0$$

(iii)
$$\int (\forall /z) = \int (x,y) = \int (x,y) = \int (\forall /z) = \frac{1}{2} (x,y) = \frac{1}{2} (x,y) = \frac{1}{2} (x,y) = \frac{1}{2} (y,y) = \frac{1}{2} (y,y$$

$$= \int_{0}^{2} \left(\frac{x}{3k} + \frac{x^{2}}{k} \right) dx + \frac{x}{k} = \int_{0}^{2} \left[\frac{x}{3k} + \frac{x^{3}}{4k} \right]_{0}^{2} \left[\frac{1}{3} + \frac{x}{3k} \right]_{0}^{2}$$

$$= \left[\frac{x^{2}}{4k} + \frac{x^{3}}{4k} \right]_{0}^{2} \left[\frac{1}{3} + \frac{x^{3}}{3k} \right]_{0}^{2}$$

$$= \frac{1}{4k} \left[\frac{1}{2} + \frac{1}{3} \right]_{0}^{2} \left[\frac{1}{3} + \frac{x^{3}}{k} \right]_{0}^{2} dx$$

$$= \frac{10}{4k} \left[\frac{1}{2} + \frac{1}{3} \right]_{0}^{2} dx + \frac{x^{3}}{k} \right]_{0}^{2} dx$$

$$P(\gamma < V_{a}) = \int_{0}^{2} \left[\frac{x}{3k} + \frac{x^{3}}{k} \right]_{0}^{2} dx$$

$$= \int_{0}^{2} \left[\frac{x}{3k} + \frac{x}{3k} \right]_{0}^{2} dx$$

$$= \int_{0}^{2} \left[\frac{x}{3k} + \frac{x}{3k} \right]_{0}^{2} dx$$

$$= \left[\frac{2}{3}\left(\frac{1}{4}\right)^{3} + \frac{1}{3}\left(\frac{1}{4}\right)\right]_{p(1)}$$

$$= \left[\frac{2}{3}\left(\frac{1}{4}\right)^{3} + \frac{1}{3}\left(\frac{1}{4}\right)\right]_{p(1)}$$

$$= \left[\frac{2}{3}\left(\frac{1}{4} + \frac{1}{4}\right)^{2}\right]_{p(1)}$$

$$= \left[\frac{2}{3}\left(\frac{1}{4} + \frac{1}{4}\right)^{2}\right]_{p(1)}$$

$$= \frac{1}{3}\left[\frac{2}{3}\left(\frac{1}{4} + \frac{1}{4}\right)^{2}\right]_{p(1)}$$

$$= \frac{5}{4}\left[\frac{4}{4}\right]_{p(1)}$$

$$= \frac{5}{4}\left[\frac{4}{4}\right]_{p(1)}$$

$$= \frac{5}{4}\left[\frac{4}{4}\right]_{p(1)}$$

$$= \frac{5}{4}\left[\frac{4}{4}\right]_{p(1)}$$

$$= \frac{1}{2}\left[\frac{2}{3}\left(\frac{1}{4} + \frac{1}{4}\right)^{2}\right]_{p(1)}$$

$$= \frac{1}{2}\left[\frac{1}{4}\left(\frac{1}{4} + \frac{1}{4}\right)^{2}\right]_{p(1)}$$

$$= \begin{bmatrix} \frac{2}{3} + \frac{3}{3} - \frac{3}{6} - \frac{3}{44} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} \frac{3}{3} + \frac{1}{3} - \frac{1}{6} - \frac{1}{44} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{3}{3} - \frac{1}{6} - \frac{1}{44} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{3}{3} - \frac{1}{6} - \frac{1}{44} \end{bmatrix}$$

$$= \frac{19}{24}$$

$$p(y \in \sqrt{a} / x > 1) = \underbrace{p(y \in \sqrt{2}, x > 1)}_{p(x > 1)}$$

$$p(y \in \sqrt{a} / x > 1) = \frac{5}{19}$$

$$\therefore p(y \in \sqrt{a} / x > 1] = \frac{5}{19}$$

$$(h) p(x \in \gamma) = \iint (\frac{2}{3} + \frac{3}{424}) = \frac{5}{19}$$

$$(h) p(x \in \gamma) = \iint (\frac{2}{3} + \frac{3}{424}) = \frac{5}{19}$$

$$= \iint (\frac{9}{3} + \frac{3}{424}) = \frac{5}{19}$$

(a.s. and
TJ X and Y are Standom
Variables, then Covariance between X
and Y is defined as
Cov (XN) =
$$F[XY] - F[X], F[Y].$$

Note:
If X and Y are independent
then, $F[XY] = F[X], F[Y]$
 $\Rightarrow Cov (XN) = 0$
(1) Cov (ax, by) = ab cov(XN)
(3) Cov (ax, ta, Yab) = $Cov(XN)$
(3) Cov (ax, ta, Yab) = $Cov(XN)$
(4) Var ($x_1 - x_a$) = Var $x_1 + Var x_2 + 2 cov (x_1, x_a)$
(5) P3 X, & X2 are independent, then
Var ($x_1 - x_a$) = Var $x_1 + Var x_2$.
(correlation:
Karl - parsons Coefficient of Correlation:
 $T(X,Y) = \frac{Cov(X,Y)}{Ox Oy}$

(and

 $\sigma_{\mathbf{x}} = \int \frac{1}{n} \left\{ \boldsymbol{\xi} \, \boldsymbol{x}^2 - \boldsymbol{x}^2 \right\}, \quad \overline{\mathbf{x}} = \boldsymbol{\xi} \, \boldsymbol{x}$ 1 2y - 0 y - 1 X = EY MODO Tyl = benitoos di 20-1) Correlation Coefficient may also be denoted by P(x,y) (or) Pxy a) If P(x,v) = 0, we say that × and × are uncorrelated. O = (MX) VOD C= 3) when TELS the correlation is (rance) var (1) Perfect and positive. Two independent Variables are ancorrelated. Since Cov(x, y=0 when (ax, x) YOUR (XIAXA) = VOLX X + YOU XA+ 2 CON (X, XA) X and Y are independent (x, x) vol 6 - ex 20V to x col (x, -ix) Lov (2) $\gamma(x,y) = \frac{\alpha}{\sigma_x \sigma_y} = 0$ 10. S'Calculate the Correlation Coefficient for the following types height (in in ches) indialarrad ha in Pathers (x) and their Lons (Y) Of 67 68 69 70 72 61 66 65 X 72 72 69 21 68 65 67 68 Y

		•	1	22	= 2.0	
	×	Y	XY	×	Y	
	65	67	4355	1225	4489	
	66	68	4488	4356	4624	317
	67	65	4355	4489	4225	
	67	68 -	4556	A489	4624	
	68	72	4896	4624	5184	
	69	72 **	4968	4761	5184	
	70	69	4830	4900	4761	
	72 0	Pa41-1	5112	5184	5041	
-	ÉX =	Ey E C	EXY = 6 37 560	Ex2= 27028	Ey2= 38132	
and the second se	a V - 2	-X = °	44 - 6	8		
de Ce	$\overline{y} = \frac{z}{z}$	y = 5	$\frac{544}{8} = 6$ $\frac{552}{8} = 6$ 3103	ور ده عامانه م ا	2.345	6
	$\overline{y} = \frac{x}{\overline{y}}$	y = 5	34023	9 11 ab 01 5 5 5 20 7 31	2.4025 2.345 91 101102 X	6
2 · · · · · · · · · · · · · · · · · · ·	$\overline{y} = \overline{z}$ $\overline{x} \overline{y} = \overline{z}$ $\overline{x} \overline{y} = \overline{z}$	y = se	3 10-33	9 11 de 01 5 1 - 0 9 - 9	2. 40 2 5 2. 34 5 31 4 101 202 X 01 X 01 X 01 H	6
	$\overline{y} = \frac{x}{\overline{y}}$	$\frac{y}{n} = \frac{y}{n}$	3 10-33	91102 01 51 - 01 - 03	2. 40 2 5 2. 34 5 91 4 Neibilde? X 01 1 41. 8 1	6
	$\overline{y} = \frac{z}{x}$	$\frac{y}{n} = \frac{y}{n}$	$\frac{552}{8} = 6$ 31020 = 4692 $x^2 - x^2$	91102 01 51 - 01 - 03	2.4025 2.345 2.345 91 91 101 102 X 01 11 11 101 X 01 11 11 2 5 2 5 2 5 2 5 5 5 5 5 5 5 5 5	6

$$\overline{u} = \frac{S_{u}}{v_{t}} = \frac{-3}{b} = -0.5$$

$$\overline{v} = \frac{S_{v}}{v_{t}} = \frac{-3}{b} = -0.5$$

$$\overline{v} = \frac{S_{v}}{v_{t}} = \frac{-3}{b} = -0.5$$

$$\overline{v} = -0.5 \times -0.5$$

$$= 0.25$$

$$\overline{v} = \sqrt{\frac{1}{b}} \le u^{2} - (\overline{u})^{2}$$

$$= \sqrt{\frac{1}{b}} (19) - (0.25)$$

$$= 1.70$$

$$\overline{v} = \sqrt{\frac{1}{b}} \le v^{2} - (\overline{v})^{2}$$

$$= \sqrt{\frac{1}{b}} (18) - (0.25)$$

$$= 1.70$$

$$\overline{v} (x,y) = \frac{C_{0v} (u/v)}{\overline{v}}$$

$$= \frac{1}{\sqrt{b}} (10) - \frac{1}{\sqrt{v}} = \frac{1}{\sqrt{v}}$$

3. The Joint probability mass Junction

$$\times$$
 and γ is
 $\boxed{\frac{1}{2}}$ $\boxed{\frac{1}{2}}$

$$F[y^{2}] = constant i for a constant i for a for a constant i for a cons$$

19 If the independent Standom Variable
X and y have the Variance 36 and 16
pespectively. Find the convelation Coefficients
blue X-1Y and X-Y.
Solution:
Griven:
Var (X)= 36
Var(Y)=16
X+Y are independent

$$E[xvJ = E[x] E[x]$$

Let $u = x_{AY}$
 $v = x_{-Y}$
Var (u) = Var(XAY)
 $= 1^{2} Var(x) + 1^{2} Var(Y)$
 $= 1 \times 36 + 1 \times 16 = 36 + 16$
 $= 52$.
 $\sigma_{u}^{2} = 52$
Var(x) + (-3^{2} Var(y))
 $= 1 \times 36 + 1 \times 16$
 $= 36 + 16$
 $= 52$.
 $\sigma_{v} = 52$
 $\sigma_{v} = 52$
 $\sigma_{v} = 52$
 $\sigma_{v} = 52$

$$Cov(u,v) = F(uv] - F(u)F(v)$$

$$F[vv] = F(x^2 - y^2]$$

$$F(uv) = F(x^2 - y^2]$$

$$F(uv) = F(x^2 - F(x^2)]$$

$$F(uv) = F(x^2 - F(x^2)]$$

$$F(v) = F(x^2 - F(x^2)]$$

$$F(v) = F(x^2 - F(x^2)]$$

$$F(v) = F(x^2 - F(x^2) - F(x^2)$$

Pf the joint paid of (xw) is
given by
$$f(x,y) = x+y$$
; $0 \le x$, $y \le 1$
Find f_{xx} .
Solution:
Griven
 $f(x,y) = \int \int xy f(x,y) dx dy$
 $= \int \int xy (x+y) dx dy$
 $= \int \int xy (x+y) dx dy$
 $= \int \int \frac{x^2y}{2} + \frac{x^2y^2}{2} \int \frac{dy}{dx} dy$
 $= \int \left[\frac{x^2y}{2} + \frac{x^2y^2}{2}\right] dx dy$
 $= \int \left[\frac{x^2y}{2} + \frac{x^2y^2}{2}\right] dx dy$
 $= \int \left[\frac{x^2y}{2} + \frac{x^2y^2}{2}\right] dx dy$
 $= \int \left[\frac{x^2}{2} + \frac{y^3}{2}\right] \int \frac{dy}{dx} dy$
 $= \int \left[\frac{x^2}{2} + \frac{y^3}{2}\right] \int \frac{dy}{dx} dy$
 $= \int \left[\frac{x^2}{2} + \frac{y^3}{2}\right] \int \frac{dy}{dx} dy$
 $= \int \left[\frac{x}{2} + \frac{y^3}{2}\right] \int \frac{dy}{dx} dy$
 $= \frac{1}{6} + \frac{1}{6}$
 $= \frac{2}{6}$
Mas of x, $f(x) = \int f(x,y) dy$

$$= \begin{bmatrix} xy + \frac{y^2}{2} \end{bmatrix}' (y) = \begin{bmatrix} -1 \end{bmatrix} d$$

$$= 2 \cdot \frac{y}{2} + \frac{y_2}{2}$$

$$\int (x) = x + \frac{y_2}{2}$$

$$M df of Y, f(y) = \frac{y}{2} \int (x, y) dx - \frac{y}{2}$$

$$= \begin{bmatrix} \frac{x^2}{2} + \frac{xy}{2} \end{bmatrix} = \frac{1}{2} + \frac{y}{2}$$

$$\frac{d(y) = \frac{y}{2} + \frac{y}{2}}{\frac{1}{2} + \frac{y}{2}}$$

$$= \int 2 (x + \frac{y}{2}) dx - \frac{y}{2}$$

$$= \begin{bmatrix} \frac{x^3}{2} + \frac{x^2}{2} & \frac{y}{2} \\ \frac{y}{2} + \frac{x}{2} & \frac{y}{2} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{x^3}{2} + \frac{x^2}{2} & \frac{y}{2} \\ \frac{y}{2} + \frac{x}{2} & \frac{y}{2} \end{bmatrix}$$

$$E[y] = \int f_{j} f_{j} f_{j} y (y) dy + f_{j} y =$$

$$= \int (y (y+y_{k})) dy + f_{j} y =$$

$$= \int (y^{2} + y_{k}) dy + f_{j} y =$$

$$= \int (y^{3} + \frac{y^{2}}{4} - \frac{1}{6}) dy + f_{j} y =$$

$$= \int \frac{1}{8} + \frac{1}{4} + \frac{1}{6} + \frac{1}{$$

$$= \int (y^{3} + \frac{y^{3}}{a}) dy \frac{1}{a}$$

$$= \left[\frac{y^{4}}{a} + \frac{y^{3}}{b} \right]^{1}$$

$$= \frac{1}{a} + \frac{1}{b}$$

$$= \frac{10}{aq}$$

$$= 5/12$$

$$Vai(n) = F[x^{3}] - [E(n)]^{2} - (n)]$$

$$= \frac{5}{12} - \frac{1}{12q}$$

$$\sigma_{x}^{2} = \frac{1}{12} - \frac{1}{2}q$$

$$\sigma_{x}^{2} = \frac{1}{12} - \frac{3}{2}q$$

$$Vas(y) = F[y] - (F(x))^{2}$$

$$= \frac{1}{12} - \frac{25}{32q} + \frac{1}{12q}$$

$$\sigma_{y}^{2} = \frac{4}{14q} = 5 \sigma_{y} = \sum \sqrt{\frac{1}{12q}} \sqrt{\frac{1}{12q}}$$

$$F(x,y) = \frac{Cov(x,y)}{\sigma_{x} - \sigma_{y}}$$

$$= \frac{F[x \times J] - F[x] F[x]}{\sigma_{x} - \sigma_{y}}$$

$$= \frac{1}{3} - \frac{1}{12} + \frac{1}{12q}$$

$$=\frac{1}{8}\left[a_{0}-a_{x}-a_{y}\right] - (1a - a_{y}-a_{y})$$

$$=\frac{1}{8}\left[16-a_{x}+a_{y}\right] - (1a - a_{y}-a_{y})$$

$$=\frac{1}{8}\left[6-a_{x}\right]$$

$$=\frac{1}{8}\left[6-a_{x}\right]$$

$$=\frac{1}{8}\left[6-a_{x}-a_{y}\right]$$

$$=\frac{1}{8}\left[6-a_{x}-a_{y}\right]$$

$$=\frac{1}{8}\left[6-a_{x}-a_{y}-a_{x}\right]$$

$$=\frac{1}{8}\left[6-a_{x}-a_{y}-a_{x}\right]$$

$$=\frac{1}{8}\left[6-a_{x}-a_{y}-a_{x}\right]$$

$$=\frac{1}{8}\left[1a-a_{y}-a_{y}\right]$$

$$=\frac{1}{8}\left[1a-a_{y}-a_{y}\right]$$

$$=\frac{1}{8}\left[1a-a_{y}-a_{y}\right]$$

$$=\frac{1}{8}\left[1a-a_{y}-a_{y}\right]$$

$$=\frac{1}{8}\left[1a-a_{y}-a_{y}\right]$$

$$=\frac{1}{8}\left[1a-a_{y}\right]$$

$$=\frac{1}{8}\left[1a-a_{y}\right]$$

$$=\frac{1}{8}\left[1a-a_{y}\right]$$

$$E[x_{N}] = \int \int x_{Y} f(x_{Y}) dx dy$$

$$= \int \int x_{Y} (\frac{6-x-y}{8}) dx dy$$

$$= \int \int x_{Y} (\frac{6-x-y}{8}) dx dy$$

$$= \frac{1}{8} \int \int bx_{Y} - x_{Y}^{2} - x_{Y}^{2} dx dy$$

$$= \frac{1}{8} \int \int \frac{6x_{Y}}{8} - \frac{x_{Y}}{3} - \frac{x_{Y}}{2} \int dy$$

$$= \frac{1}{8} \int \left[\frac{6(h)y}{8} - \frac{8y}{3} - \frac{2y^{2}}{3} \int dy \right]$$

$$= \frac{1}{8} \int \left[\frac{6(h)y}{8} - \frac{8y}{3} - \frac{2y^{2}}{3} \int dy \right]$$

$$= \frac{1}{8} \int \left[\frac{12y}{8} - \frac{8y}{3} - \frac{2y^{2}}{3} \int dy \right]$$

$$= \frac{1}{8} \left[\frac{12y}{8} - \frac{8y^{2}}{3k} - \frac{2y^{3}}{3} \int dy \right]$$

$$= \frac{1}{8} \left[\frac{12y}{8} - \frac{8y^{2}}{3k} - \frac{2y^{3}}{3} \int dy \right]$$

$$= \frac{1}{8} \left[\frac{12y}{8} - \frac{8y^{2}}{3k} - \frac{2y^{3}}{3} \int dy \right]$$

$$= \frac{1}{8} \left[\frac{12y}{8} - \frac{8y^{2}}{3k} - \frac{2y^{3}}{3} \int dy \right]$$

$$= \frac{1}{8} \left[\frac{12y}{8} - \frac{8y^{2}}{3k} - \frac{2y^{3}}{3} \int dy \right]$$

$$= \frac{1}{8} \left[\frac{12y}{8} - \frac{8y^{2}}{3k} - \frac{2y^{3}}{3} \int dy \right]$$

$$= \frac{1}{8} \left[\frac{96 - 69}{8} - \frac{128}{3} - \frac{2(64)}{3} - \frac{16}{3} - \frac{16}{3} \right] \right]$$

$$= \frac{1}{8} \left[\frac{32}{8} - \frac{6}{3} - \frac{128}{3} \right]$$

$$F[x] = \int x f(x) dx$$

$$= \int x (\frac{b(x)}{b} dx$$

$$= \int x (\frac{b(x)}{b} dx$$

$$= \int x (\frac{b(x)}{b} dx) dx$$

$$=\frac{1}{4}\left[\frac{5x^{1}x^{2}}{2x}-\frac{6x}{3}\right]-\left[\frac{5x^{2}}{2}-\frac{6}{3}\right]$$

$$=\frac{1}{4}\left[\frac{10-\frac{6}{3}}{2}-\frac{10-\frac{9}{3}}{3}\right]$$

$$=\frac{1}{4}\left[\frac{10-\frac{6}{3}}{2}-\frac{2x^{3}}{3}\right]$$

$$=\frac{1}{4}\left[\frac{56}{2}-\frac{2x^{3}}{3}\right]$$

$$=\frac{17}{6}$$

$$=\frac{17}{6}$$

$$E[x^{2}] = \int x^{2} \int (x) dx$$

$$=\frac{1}{6}\int x^{2} \left(\frac{6-2x}{8}\right) dx$$

$$=\frac{1}{8}\int 6x^{2}-2x^{3} dx$$

$$=\frac{1}{8}\left[\frac{6x^{3}}{3}-\frac{2x^{4}}{4}\right]$$

$$=\frac{1}{8}\left[\frac{6x^{3}}{3}-\frac{2x^{4}}{4}\right]$$

$$=\frac{1}{8}\left[16-8\right]$$

$$=1$$

$$\begin{aligned}
\mathcal{E} [+^{2} J = \int y^{2} J(y) dy \\
= \int y^{2} \left(\frac{5-y}{4} \right) dy \\
= \int \int y^{2} \left(\frac{5-y}{4} \right) dy \\
= \int \int \left[\frac{5y^{2}}{3} - \frac{y^{4}}{4} \right]^{2} \\
= \int \left[\frac{5y^{2}}{3} - \frac{y^{4}}{4} \right]^{2} \\
= \int \left[\frac{5x^{5}}{3} - \frac{y^{4}}{4} \right]^{2} \\
= \int \left[\frac{5x^{5}}{3} - \frac{x^{5}}{4} \right] - \left[\frac{5x^{8}}{3} - \frac{y^{6}}{4} \right] \\
= \int \left[\frac{5x^{5}}{3} - \frac{6x}{4} \right] - \left[\frac{4x^{5}}{3} - \frac{4}{4} \right] \\
= \int \left[\frac{2x^{5}}{3} - \frac{6x}{4} \right] - \left[\frac{4x^{5}}{3} - \frac{4}{4} \right] \\
= \int \left[\frac{2x^{5}}{3} - \frac{6x^{5}}{3} \right] \\
= 1 - \left[\frac{8x^{5}}{3} - \frac{8x^{5}}{3} \right] \\
= 1 - \left[\frac{8x^{5}}{3} - \frac{8x^{5}}{3} \right] \\
= 1 - \frac{8x^{5}}{3} \\
= - \frac{8x^{5}}{3} \\
\end{bmatrix}$$

$$\begin{aligned}
\nabla_{x} = \sqrt{\frac{11}{3k}} \\
Vas(y) = \sigma_{y}^{2} = E[\frac{3}{3}J - (E(y))^{4} \\
&= \frac{3C}{3} - (\frac{11}{6})^{2} \\
&= \frac{3C}{3} - (\frac{389}{36})^{2} \\
&= \frac{300 - 2899}{36} \\
&= \frac{3}{36} \\
&= \frac{11}{36} \\
&= \frac{11}{36} \\
&= \frac{11}{36} \\
&= \frac{1}{36} - \frac{5}{5} \cdot \frac{17}{5} \\
&= \frac{7}{8} - \frac{5}{5} \cdot \frac{17}{5} \\
&= \frac{7}{8} - \frac{5}{5} \cdot \frac{17}{5} \\
&= \frac{7}{8} - \frac{85}{36} \\
&= \frac{1}{36} - \frac{85}{36} \\
&= \frac{84 - 85}{36} \times \frac{38}{36} \\
&= \frac{84 - 85}{36} \times \frac{38}{36}
\end{aligned}$$

Correlation Coefficient:

$$T = \pm \sqrt{b_{XY} \times b_{YX}}$$

$$b_{YX} = \frac{\leq (x - \overline{x}) (y - \overline{y})}{\leq (x - \overline{x})^2}$$

$$b_{XY} = \frac{\leq (x - \overline{x}) (y - \overline{y})}{\leq (y - \overline{y})^2}$$

$$b_{XY} = \frac{\leq (x - \overline{x}) (y - \overline{y})}{\leq (y - \overline{y})^2}$$
From the following clata, Find
(i) The two segression eqn.
(ii) The coefficient of correlation between
the masks in economics and
Statistics.
(iii) The most likery marks in economics
30.
Marks in 25 as 35 32 31 36 29 38 34 3
Marks in 28 34 34 34 34 34 34 34 33 31 30 33 3

$$b_{YY} = 0 + b + q_{3} \qquad b_{YX} = -0.6643$$

$$b_{XY} = \frac{5(2x - \bar{x})(y - \bar{y})}{5(q - \bar{y})^{3}}$$

$$= -\frac{q_{3}}{3q_{8}}$$

$$(b) = -0.2337$$

$$(b) = -0.2337$$

$$(b) = -0.66433(x - 3a)$$

$$(c) = -0.66433(x - 3a)$$

$$(c) = -0.66433(x - 2a)$$

$$(c) = -0.6643(x - 2a)$$

$$(c) = -0.6643(x - 2a)$$

$$(c) = -0.6643(x - 2a)$$

$$(c) = -0.2337(y -$$

The tangent of the angle between the lines of regression of y on x de and X on Y is 0.6 and 5xx $\sigma_x = \frac{1}{2} \sigma_y$. Find the correlation coefficient between x and Y. fam 0=0.6 0x=0.50y

Solution!

Griven'.

tan 0 = 0.6.

 $\sigma_x = 0.5 \sigma_y$.

Angle blue two lines of regression. is $tano = \frac{1-s^2}{3} \left(\frac{\sigma \times \sigma \gamma}{\sigma^2 + \sigma \gamma^2} \right)$ $0.6 = \frac{1-\gamma^2}{\gamma} \left(\frac{(0.5 \, \text{Gy}) \, \text{Gy}}{(0.5 \, \text{Gy})^2 + 0 \, \gamma^2} \right)$ $=\frac{1-\gamma^2}{\gamma}\left(\frac{0.5\ \mathrm{Gy}^2}{0.25\ \mathrm{Gy}^2+\mathrm{Gy}^2}\right)$ $0.6 = \frac{1-y^2}{2} \left(\frac{0.5 \, \overline{5} \, \overline{7}}{1.85 \, \overline{5} \, \overline{7}^2} \right)$ $\frac{1-x^{2}}{x} = \frac{(1\cdot 25)(0\cdot 6)}{0\cdot 5}$ = 0.75 0.5

$$\frac{2}{3} + 1.57 - 1 = 0$$

$$\frac{2}{3} = \frac{1}{2}, -2 \quad (-2 \text{ is not possible})$$

$$\sqrt{7} = \frac{1}{2}$$

1912/2013 Transformation of two dimensional raudom Vasioble! - 66

$$f_{uv} = f_{xy}(x,y) \left[\frac{\partial(x,y)}{\partial(u,v)} \right] \\
 f_{u}(u) = \int f_{uv}(u,v) dv \\
 f_{v}(u,v) = \int f_{uv}(u,v) du.$$

Is the joint p.d.s of X,Y is by $f_{xy}(x,y) = x+y$, $o \leq x, y \leq 1$. given Find the p.d.f of u=xy. Solution : Step 1 !

To find joint p.a.f. of X & Y. Griven: z+y. bat at

Step 2: Introd.

Step 3:
fx preasing the above an as

$$x = g, (u,v)$$
 $y = g_2(u,v)$
 $u = x, v$ $y = y$
 $u = x, v$ $y = y$
 $x = \frac{u}{v}$ $y = \frac{\partial x}{\partial y} = -\frac{u}{\sqrt{2}}$
 $\frac{\partial x}{\partial u} = \frac{1}{\sqrt{2}}$ $\frac{\partial x}{\partial y} = -\frac{u}{\sqrt{2}}$
 $\frac{\partial y}{\partial u} = 0$ $\frac{\partial y}{\partial y} = 1$
 $g_{tep}, g:$
Find $[J] = \left\{\frac{\partial(x,y)}{\partial u}\right\}^{-1}$
 $J = \left\{\frac{\partial(x,y)}{\partial(u,v)}\right\} = \left\{\frac{\partial x}{\partial u} \quad \frac{\partial x}{\partial v}\right\}$
 $= \left[\frac{1}{\sqrt{2}}, \frac{-u}{\sqrt{2}}\right]$
 $= \frac{1}{\sqrt{2}}, -0$
 $= \frac{1}{\sqrt{2}}, -0$
 $f_{top} 5:$
To find pdf of (u,v)
 $f_{tor}(u,v) = f_{xy}(x,y)[J]$

$$= \left(\frac{u}{v} + v\right) \frac{1}{v} \qquad - - \left($$

$$= \begin{bmatrix} -u+1 \end{pmatrix} - \begin{pmatrix} -1+u \end{pmatrix} \end{bmatrix} \begin{pmatrix} u+1+1-u \\ 2-eu \\ 2-eu \\ 2-eu \\ = 2-2u \\ = 2(1-u) \\ f_u(u) = 2(1-u) & 0 \le u \le 1 \\ \end{bmatrix}$$
The Joint pd. f of x 2 y is given by $\int (x,v) = 2 \\ (x-u) \end{pmatrix} \xrightarrow{(x+y)} x > 0, \forall > 0, find the pd. f of x, y. \\ Pa. f of u = x+y \\ Solution: \\ Step:1: \\ To find Joint pd f of x, y. \\ Griven \\ -(x+y) \\ f(x,v) = 2 \\ (x+y) \\ f(x,v) \\ f(x,v$

2 2 4 - 2 to 10 2 + - - 1 - 1 = 0 100 24 1=100 92 Step 4: Find $|J| = \left[\frac{\partial(x,g)}{\partial(u,v)}\right]$ 92 94 92 94 94 94 94 94 $(J) = \left[\frac{\partial(x,y)}{\partial(u,v)}\right]_{u,v} =$ 2] 2 Step 5: . To find pat of CUN Duce all $f_{uv}(u,v) = f_{xy}(x,y) |J|$ BUNNING . usity pasawat Carty) COV = aggs ee 10 1009 - (x+y) 2 x20 9>0 24-430 - 20 Step 6: Changing the domain (X,y) with (CHN) 3 M > V go 12 19>0 \$ W 2/2 x>0=> u>V/2 3 ano No 2 y >0 => gv >0. L 1.5 1/2 1 0 Tw 200

Step T'
To find the pdf of
$$u = \frac{x_{1y}}{2}$$

 $\int_{u} (u) = \int \int_{ov} find the pdf of $u = \frac{x_{1y}}{2}$
 $= \int \int_{au}^{2} \int_{ov} find the pdf of $u = \frac{x_{1y}}{2}$
 $= \int \int_{au}^{2} \int_{au$$$

$$\begin{aligned}
f_{xy}(x,y) &= f_x(x) \cdot f_y(y) = 11 \\
&= \begin{bmatrix} 1 & + & -x & -x \\ 0 & -x & -x \\$$

$$IJI = V$$

$$IJI$$

$$\frac{1}{1 - \frac{1}{1 - \frac{1}{2}}} = \frac{1}{1 - \frac{1}{2}} = \frac{1}{1 - \frac{1}{2}} = \frac{1}{1 - \frac{1}{2}} = \frac{1}{1 - \frac{1}{2}} = \frac{1}{2 + \frac{1}{$$