
CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.1 Jeppiaar Institute of Technology

UNIT IV ITERATIVE IMPROVEMENT

The Simplex Method - The Maximum-Flow Problem – Maximum Matching in Bipartite

Graphs- The Stable marriage Problem.

ITERATIVE IMPROVEMENT

It starts with some feasible solution (a solution that satisfies all the constraints of the

problem) and proceeds to improve it by repeated applications of some simple step. This step

typically involves a small, localized change yielding a feasible solution with an improved

value of the objective function. When no such change improves the value of the objective

function, the algorithm returns the last feasible solution as optimal and stops.

There can be several obstacles to the successful implementation of this idea. First,

we need an initial feasible solution. Second, it is not always clear what changes should be

allowed in a feasible solution so that we can check efficiently whether the current solution

is locally optimal and, if not, replace it with a better one. Third—and this is the most

fundamental difficulty— is an issue of local versus global extremum (maximum or

minimum).

4.1 THE SIMPLEX METHOD

Converting a linear program to Standard Form

• Before the simplex algorithm can be applied, the linear program must be converted

into standard form where all the constraints are written as equations (no inequalities)

and all variables are nonnegative (no unrestricted variables).

• This process of converting a linear program to its standard form requires the addition

of slack variable si which represents the amount of the resource not used in the

ith constraint. Similarly, constraints can be converted into standard form by

subtracting excess variable ei .

• The standard form of any linear program can then be represented by the following

linear system with n variables (including decision, slack and excess variables) and m

constraints.

max z

(or min)

s.t. a11 x1 +

a21 x1 +

...

a12 x2 +

a22 x2 +

...

... +

... +

... +

a1n xn

a2n xn

...

= b1

= b2

...

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.2 Jeppiaar Institute of Technology

 am1 x1 + am2 x2 + ... + amn xn = bm

EXAMPLE 1 Consider the following linear programming problem in two

variables: maximize 3x + 5y

subject to x + y ≤ 4

x + 3y ≤ 6

x ≥ 0, y ≥ 0.

By definition, a feasible solution to this problem is any point (x, y) that satisfies all the

constraints of the problem; the problem’s feasible region is the set of all its feasible points.

Our task is to find an optimal solution, a point in the feasible region with the largest value

of the objective function z = 3x + 5y. Linear programming problems with the empty feasible

region are called infeasible. Obviously, infeasible problems do not have optimal solutions.

To begin with, before we can apply the simplex method to a linear programming

problem, it has to be represented in a special form called the standard form. The standard

form has the following requirements:

• It must be a maximization problem.

• All the constraints (except the nonnegativity constraints) must be in the form of

linear equations with nonnegative right-hand sides.

• All the variables must be required to be nonnegative.

Thus, the general linear programming problem in standard form with m constraints and n

unknowns (n ≥ m) is

maximize c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn = bi, where bi ≥ 0 for i = 1, 2, . . . , m

x1 ≥ 0, . . . , xn ≥ 0.

It can also be written in compact matrix notations:

maximize cx

subject to Ax = b

x ≥ 0, where

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.3 Jeppiaar Institute of Technology

Any linear programming problem can be transformed into an equivalent problem in

standard form. If an objective function needs to be minimized, it can be replaced by the

equivalent problem of maximizing the same objective function with all its coefficients cj

replaced by −cj , j = 1, 2, . . . , n. If a constraint is given as an inequality, it can be replaced

by an equivalent equation by adding a slack variable representing the difference between

the two sides of the original inequality.

Thus, problem (10.2) in standard form is the following linear programming problem in four

variables:

maximize 3x + 5y + 0u + 0v

subject to x + y + u = 4

x + 3y+ + v = 6

x, y, u, v ≥ 0.

We need to set two of the four variables in the constraint equations to zero to get a

system of two linear equations in two unknowns and solve this system. For the general case

of a problem with m equations in n unknowns (n ≥ m), n − m variables need to be set to zero

to get a system of m equations in m unknowns. If the system obtained has a unique solution—

as any nondegenerate system of linear equations with the number of equations equal to the

number of unknowns does—we have a basic solution; its coordinates set to zero before

solving the system are called nonbasic, and its coordinates obtained by solving the system

are called basic.

If all the coordinates of a basic solution are nonnegative, the basic solution is called

a basic feasible solution. The simplex method progresses through a series of adjacent

extreme points (basic feasible solutions) with increasing values of the objective function.

Each such point can be represented by a simplex tableau, a table storing the information

about the basic feasible solution corresponding to the extreme point. For example, the

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.4 Jeppiaar Institute of Technology

simplex tableau for (0, 0, 4, 6) of problem is presented below:

In general, a simplex tableau for a linear programming problem in standard form with

n unknowns and m linear equality constraints (n ≥ m) has m + 1 rows and n + 1 columns.

Each of the first m rows of the table contains the coefficients of a corresponding constraint

equation, with the last column’s entry containing the equation’s right-hand side. The

columns, except the last one, are labeled by the names of the variables. The last row of a

simplex tableau is called the objective row.

The objective row is used by the simplex method to check whether the current tableau

represents an optimal solution: it does if all the entries in the objective row—except,

possibly, the one in the last column—are nonnegative. If this is not the case, any of the

negative entries indicates a nonbasic variable that can become basic in the next tableau.

A new basic variable is called the entering variable, while its column is referred to

as the pivot column; we mark the pivot column by ↑ . To get to an adjacent extreme point

with a larger value of the objective function, we need to increase the entering variable by the

largest amount possible to make one of the old basic variables zero while preserving the

nonnegativity of all the others. We can translate this observation into the following rule for

choosing a departing variable in a simplex tableau: for each positive entry in the pivot

column, compute the θ-ratio by dividing the row’s last entry by the entry in the pivot column.

The row with the smallest θ-ratio determines the departing variable, i.e., the variable to

become nonbasic.

Finally, the following steps need to be taken to transform a current tableau into the

next one. (This transformation, called pivoting). First, divide all the entries of the pivot row

by the pivot, its entry in the pivot column, to obtain rownew←

rownew: 1/3 1 0 1/3 2.

Then, replace each of the other rows, including the objective row, by the difference

row – c. rownew←, where c is the row’s entry in the pivot column.

row 1 − 1 . rownew←: 2/3 0 1 − 1/3 2,

row 3 − (−5) . −−− rownew←: − 4/3 0 0 5/3 10. Thus, the

simplex method transforms tableau (10.5) into the following tableau:

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.5 Jeppiaar Institute of Technology

This tableau represents the basic feasible solution (3, 1, 0, 0). It is optimal because

all the entries in the objective row of tableau are nonnegative. The maximal value of the

objective function is equal to 14, the last entry in the objective row.

Summary of the simplex method:

Step 0 Initialization Present a given linear programming problem in standard form and set

up an initial tableau with nonnegative entries in the rightmost column and m other columns

composing the m × m identity matrix.

Step 1 Optimality test If all the entries in the objective row (except, possibly, the one in the

rightmost column, which represents the value of the objective function) are nonnegative—

stop: the tableau represents an optimal solution whose basic variables’ values are in the

rightmost column and the remaining, nonbasic variables’ values are zeros.

Step 2 Finding the entering variable Select a negative entry from among the first n elements

of the objective row.

Step 3 Finding the departing variable For each positive entry in the pivot column, calculate

the

θ-ratio by dividing that row’s entry in the rightmost column by its entry in the pivot column.

Step 4 Forming the next tableau Divide all the entries in the pivot row by its entry in the

pivot column. Subtract from each of the other rows, including the objective row, the new

pivot row multiplied by the entry in the pivot column of the row in question.

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.6 Jeppiaar Institute of Technology

4.2 THE MAXIMUM-FLOW PROBLEM

The transportation network in question can be represented by a connected weighted digraph

with

n vertices numbered from 1 to n and a set of edges E, with the following properties:

• It contains exactly one vertex with no entering edges; this vertex is called the

source and assumed to be numbered 1.

• It contains exactly one vertex with no leaving edges; this vertex is called the sink

and assumed to be numbered n.

• The weight uij of each directed edge (i, j) is a positive integer, called the edge

capacity. A digraph satisfying these properties is called a flow network or simply a

network.

The total amount of the material entering an intermediate vertex must be equal to the total

amount of the material leaving the vertex. This condition is called the flow-conservation

requirement. If we denote the amount sent through edge (i, j) by xij , then for any

intermediate vertex i, the flow-conservation requirement can be expressed by the following

equality constraint:

where the sums in the left- and right-hand sides express the total inflow and outflow entering

and leaving vertex i, respectively. Since no amount of the material can change by going

through intermediate vertices of the network, it stands to reason that the total amount of the

material leaving the source must end up at the sink.

Thus, we have the following equality:

This quantity, the total outflow from the source—or, equivalently, the total inflow into the

sink—is called the value of the flow.We denote it by v. It is this quantity that we will want

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.7 Jeppiaar Institute of Technology

to maximize over all possible flows in a network. Thus, a (feasible) flow is an assignment of

real numbers xij to edges (i, j) of a given network that satisfy flow-conservation constraints

(10.8) and the capacity constraints

The maximum-flow problem can be stated formally as the following optimization problem:

• An actual implementation of the augmenting path idea is, however, not quite

straightforward. To see this, let us consider the network in Figure. We start with the

zero flow shown in Figure.

• Among several possibilities, let us assume that we identify the augmenting path

1→2→3→6 first. We can increase the flow along this path by a maximum of 2 units,

which is the smallest unused capacity of its edges.

• The new flow is shown in Figure 10.5b. This is as far as our simpleminded idea about

flow-augmenting paths will be able to take us. Unfortunately, the flow shown in

Figure is not optimal: its value can still be increased along the path

1→4→3←2→5→6 by increasing the flow by 1 on edges (1, 4), (4, 3), (2, 5), and (5,

6) and decreasing it by 1 on edge (2, 3).

• The flow obtained as the result of this augmentation is shown in Figure. It is indeed

maximal.

• Thus, to find a flow-augmenting path for a flow x, we need to consider paths from

source to sink in the underlying undirected graph in which any two consecutive

vertices i, j are either i. connected by a directed edge from i to j with some positive

unused capacity rij = uij − xij (so that we can increase the flow through that edge by

up to rij units), or ii. connected by a directed edge

• Edges of the first kind are called forward edges because their tail is listed before their

head in the vertex list 1→. . . i →j . . .→n defining the path; edges of the second kind

are called backward edges because their tail is listed after their head in the path list

1→. . . i ←j . . .→n.

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.8 Jeppiaar Institute of Technology

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.9 Jeppiaar Institute of Technology

4.3 MAXIMUM MATCHING IN BIPARTITE GRAPHS

A matching in a graph is a subset of its edges with the property that no two edges share a vertex. A

maximum matching—more precisely, a maximum cardinality matching—is a matching with the

largest number of edges

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.10 Jeppiaar Institute of Technology

. In a bipartite graph, all the vertices can be partitioned into two disjoint sets V and

U, not necessarily of the same size, so that every edge connects a vertex in one of these sets

to a vertex in the other set.

Let us apply the iterative-improvement technique to the maximum cardinality-

matching problem. Let M be a matching in a bipartite graph G ={V, U, E}. How can we

improve it, i.e., find a new matching with more edges? Obviously, if every vertex in either

V or U is matched (has a mate), i.e., serves as an endpoint of an edge in M, this cannot be

done and M is a maximum matching.

 Therefore, to have a chance at improving the current matching, both V and U must

contain unmatched (also called free) vertices, i.e., vertices that are not incident to any edge

in M. For example, for the matching Ma = {(4, 8), (5, 9)} in the graph in Figure vertices 1,

2, 3, 6, 7, and 10 are free, and vertices 4, 5, 8, and 9 are matched.

Another obvious observation is that we can immediately increase a current matching

by adding an edge between two free vertices. For example, adding (1, 6) to the matching Ma

= {(4, 8), (5, 9)} in the graph in Figure 10.9a yields a larger matching Mb = {(1, 6), (4, 8),

(5, 9)}

Let us now try to find a matching larger than Mb by matching vertex 2. The only way

to do this would be to include the edge (2, 6) in a new matching. This inclusion requires

removal of (1, 6), which can be compensated by inclusion of (1, 7) in the new matching.

This new matching Mc = {(1, 7), (2, 6), (4, 8), (5, 9)} is shown in Figure

In general, we increase the size of a current matching M by constructing a simple

path from a free vertex in V to a free vertex inU whose edges are alternately in E −M and in

M. That is, the first edge of the path does not belong to M, the second one does, and so on,

until the last edge that does not belong to M. Such a path is called augmenting with respect

to the matching

For example, the path 2, 6, 1, 7 is an augmenting path with respect to the matching Mb

in Figure. Since the length of an augmenting path is always odd, adding to the matching M

the path’s edges in the odd-numbered positions and deleting from it the path’s edges in the

even- numbered positions yields a matching with one more edge than in M.

Such a matching adjustment is called augmentation. Thus, in Figure the matching Mb

was obtained by augmentation of the matching Ma along the augmenting path 1, 6, the

matching Mc was obtained by augmentation of the matching Mb along the augmenting path

2, 6, 1, 7. Moving further, 3, 8, 4, 9, 5, 10 is an augmenting path for the matching Mc After

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.11 Jeppiaar Institute of Technology

adding to Mc the edges (3, 8), (4, 9), and (5, 10) and deleting (4, 8) and (5, 9), we obtain

the matching Md = {(1, 7), (2, 6), (3, 8), (4, 9), (5, 10)} shown in Figure 10.9d. The matching

Md is not only a maximum matching but also perfect, i.e., a matching that matches all the

vertices of the graph.

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.12 Jeppiaar Institute of Technology

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.13 Jeppiaar Institute of Technology

4.1 THE STABLE MARRIAGE PROBLEM

In this section, we consider an interesting version of bipartite matching called the

stable marriage problem. Consider a set Y = {m1, m2, . . . , mn} of n men and a set X = {w1,

w2, . . . , wn } of n women. Each man has a preference list ordering the women as potential

marriage partners with no ties allowed. Similarly, each woman has a preference list of the

men, also with no ties. Examples of these two sets of lists are given in Figures.

The same information can also be presented by an n × n ranking matrix (see Figure

The rows and columns of the matrix represent the men and women of the two sets,

respectively. A cell in row m and column w contains two rankings: the first is the position

(ranking) of w in the m’s preference list; the second is the position (ranking) of m in the w’s

preference list.

For example, the pair 3, 1 in Jim’s row and Ann’s column in the matrix in Figure

indicates that Ann is Jim’s third choice while Jim is Ann’s first. Which of these two ways to

represent such information is better depends on the task at hand. For example, it is easier to

specify a match of the sets’ elements by using the ranking matrix, whereas the preference

lists might be a more efficient data structure for implementing a matching algorithm.

A marriage matching M is a set of n (m, w) pairs whose members are selected from

disjoint n-element sets Y and X in a one-one fashion, i.e., each man m from Y is paired with

exactly one woman w from X and vice versa. (If we represent Y and X as vertices of a

complete bipartite graph with edges connecting possible marriage partners, then a marriage

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.14 Jeppiaar Institute of Technology

matching is a perfect matching in such a graph.)

A pair (m, w), where m ∈ Y, w ∈ X, is said to be a blocking pair for a marriage

matching M if man m and woman w are not matched in M but they prefer each other to their

mates in M. For example, (Bob, Lea) is a blocking pair for the marriage matching M = {(Bob,

Ann), (Jim, Lea), (Tom, Sue}}because they are not matched in M while Bob prefers Lea to

Ann and Lea prefers Bob to Jim. A marriage matching M is called stable if there is no

blocking pair for it; otherwise, M is called unstable. According to this definition, the

marriage matching in Figure is unstable because Bob and Lea can drop their designated

mates to join in a union they both prefer. The stable marriage problem is to find a stable

marriage matching for men’s and women’s given preferences. Surprisingly, this problem

always has a solution.

Stable marriage algorithm

Input: A set of n men and a set of n women along with rankings of the women by each man

and rankings of the men by each woman with no ties allowed in the rankings

Output: A stable marriage matching

Step 0 Start with all the men and women being free.

Step 1 While there are free men, arbitrarily select one of them and do the following:

Proposal The selected free man m proposes to w, the next woman on his preference list (who

is the highest-ranked woman who has not rejected him before).

Response If w is free, she accepts the proposal to be matched with m. If she is not free, she

compares m with her current mate. If she prefersm to him, she accepts m’s proposal, making

her former mate free; otherwise, she simply rejects m’s proposal, leaving m free.

Step 2 Return the set of n matched pairs.

Before we analyze this algorithm, it is useful to trace it on some input. Such an example is

presented in Figure.

Let us discuss properties of the stable marriage algorithm.

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 4.15 Jeppiaar Institute of Technology

