UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE

Computing a Binomial Coefficient –Floyd' algorithm – Optimal Binary Search Trees – Multi stage graph-Coin changing problem- Knapsack Problem and Memory functions. Greedy Technique–Knapsack problem-container loading problem- Prim's algorithm-Kruskal's Algorithm- Dijkstra's Algorithm-optimal merge pattern-Huffman Trees

DYNAMIC PROGRAMMING

Dynamic programming is a technique for solving problems with overlapping subproblems.Typically, these subproblems arise from a recurrence relating a given problem's solution to solutions of its smaller subproblems. Rather than solving overlapping subproblems again and again, dynamic programming suggests solving each of the smaller subproblems only once and recording the results in a table from which a solution to the original problem can then be obtained.

This technique can be illustrated by revisiting the Fibonacci numbers. The Fibonacci numbers are the elements of the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ,

which can be defined by the simple recurrence

$$F(n) = F(n-1) + F(n-2)$$
 for $n > 1$

Since a majority of dynamic programming applications deal with optimization problems, we also need to mention a general principle that underlines such applications. Richard Bellman called it the *principle of optimality*.

3.1 COMPUTING A BINOMIAL COEFFICIENT

Computing binomial coefficients is non optimization problem but can be solved using dynamic programming. Binomial coefficients are represented by C(n, k) or $\binom{n}{k}$ and can be used to represent the coefficients of a binomial:

$$(a + b)^n = C(n, 0)a^n + \dots + C(n, k)a^{n-k}b^k + \dots + C(n, n)b^n$$

The recursive relation is defined by the prior

power C(n, k) = C(n-1, k-1) + C(n-1, k)

for n > k > 0 IC C(n, 0) = C(n, n) = 1

Dynamic algorithm constructs a nxk table, with the first column and diagonal filled out using the IC.

Cor	Construct the table:							
		0	1	k 2		<i>k</i> -1	k	
	0	1						
	1	1	1					
	2	1	2	1				
п	•							
	•							
	•							
	k	1					1	
	•							
	•							
	<i>n</i> -1	1				<i>C</i> (<i>n</i> -1, <i>k</i> -1)		
	n I n	1				C(<i>n</i> 1, <i>k</i> 1)	C(n, k)	
	11	1					$\mathcal{C}(n, \kappa)$	

The table is then filled out iteratively, row by row using the recursive relation.

Algorithm *Binomial*(*n*, *k*)

for $i \leftarrow 0$ to n do // fill out the table row wise

for i = 0 to min(i, k) do if j==0 or j==i then $C[i, j] \leftarrow 1 // IC$ else $C[i, j] \leftarrow C[i-1, j-1] + C[i-1, j] //$ recursive relation

return *C*[*n*, *k*]

The cost of the algorithm is filing out the table. Addition is the basic operation. Because $k \le n$, the sum needs to be split into two parts because only the half the table needs to be filled out for *i*

< k and remaining part of the table is filled out across the entire row.

A(n, k) =sum for upper triangle + sum for the lower rectangle

$$= \sum_{i=1}^{k} \sum_{\overline{z}=1}^{i-1} 1 + \sum_{\overline{z}=1}^{n} \sum_{\overline{z}=1}^{k} 1$$
$$= \sum_{i=1}^{k} (i-1) + \sum_{i=1}^{n} k$$
$$= (k-1)k/2 + k(n-k) \in \Theta(nk)$$

3.2 FLOYD'S ALGORITHMS

Warshall's algorithm for computing the transitive closure of a directed graph and Floyd's algorithm for the all-pairs shortest-paths problem. These algorithms are based on essentially the same idea: exploit a relationship between a problem and its simpler rather than smaller version.

Floyd's Algorithm for the All-Pairs Shortest-Paths Problem

Given a weighted connected graph (undirected or directed), the *all-pairs shortest paths problem* asks to find the distances—i.e., the lengths of the shortest paths— from each vertex to all other vertices. It is convenient to record the lengths of shortest paths in an $n \times n$ matrix *D* called the *distance matrix*: the element *dij* in the *i*th row and the *j*th column of this matrix indicates the length of the shortest path from the *i*th vertex to the *j*th vertex. For an example, see Figure 8.14. We can generate the distance matrix with an algorithm that is very similar to Warshall's algorithm.

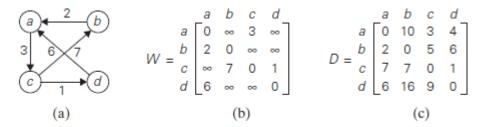


FIGURE 8.14 (a) Digraph. (b) Its weight matrix. (c) Its distance matrix.

Floyd's algorithm computes the distance matrix of a weighted graph with *n* vertices through a series of $n \times n$ matrices:

 $D(0), \ldots, D(k-1), D(k), \ldots, D(n).$

we can compute all the elements of each matrix D(k) from its immediate predecessorD(k-1) in series. Let d(k) *ij* be the element in the *i*th row and the *j*th column of matrix D(k). This means that d(k) *ij* is equal to the length of the shortest path among all paths from the *i*th vertex *vi* to the *j*th vertex *vj* with their intermediate vertices numbered not higher than *k*:

vi, a list of intermediate vertices each numbered not higher than k, vj.

vi, vertices numbered $\leq k - 1$, *vk*, vertices numbered $\leq k - 1$, *vj*.

The application of Floyd's algorithm to the graph in Figure 8.14 is illustrated in Figure 8.16. **ALGORITHM** Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem

//Input: The weight matrix *W* of a graph with no negative-length cycle

//Output: The distance matrix of the shortest paths' lengths

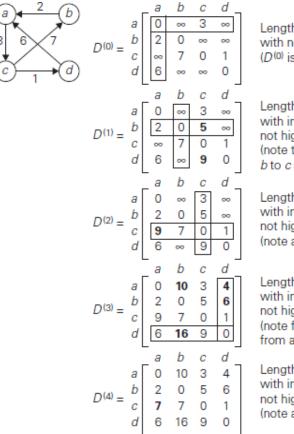
 $D \leftarrow W //$ is not necessary if W can be overwritten

for $k \leftarrow 1$ to n do

for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do

 $D[i, j] \leftarrow \min\{D[i, j], D[i, k] + D[k, j]\}$

return D



Lengths of the shortest paths with no intermediate vertices $(D^{(0)}$ is simply the weight matrix).

Lengths of the shortest paths with intermediate vertices numbered not higher than 1, i.e., just a(note two new shortest paths from b to c and from d to c).

Lengths of the shortest paths with intermediate vertices numbered not higher than 2, i.e., a and b (note a new shortest path from c to a).

Lengths of the shortest paths with intermediate vertices numbered not higher than 3, i.e., a, b, and c (note four new shortest paths from a to b) from a to d, from b to d, and from d to b).

Lengths of the shortest paths with intermediate vertices numbered not higher than 4, i.e., a, b, c, and d (note a new shortest path from c to a).

3.3 KNAPSACK PROBLEM

Given a set of items, each with a weight and a value, determine a subset of items to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible.

The knapsack problem is in combinatorial optimization problem.

Applications

In many cases of resource allocation along with some constraint, the problem can be derived in a similar way of Knapsack problem. Following is a set of example.

- Finding the least wasteful way to cut raw materials
- portfolio optimization

• Cutting stock problems

Based on the nature of the items, Knapsack problems are categorized as

- Fractional Knapsack
- Knapsack

Fractional Knapsack

In this case, items can be broken into smaller pieces, hence the thief can select fractions of items.

According to the problem statement,

- There are **n** items in the store
- Weight of **i**th item wi>0wi>0
- Profit for **i**th item pi>0pi>0 and
- Capacity of the Knapsack is W

In this version of Knapsack problem, items can be broken into smaller pieces. So, the thief may take only a fraction x_i of **i**th item.

0≼xi≤10≤xi≤1

The **i**th item contributes the weight xi.wixi.wi to the total weight in the knapsack and profit xi.pixi.pi to the total profit.

Hence, the objective of this algorithm is to

maximize
$$\sum n=1n(xi.pi)$$
maximize $\sum n=1n(xi.pi)$

subject to constraint,

$$\sum n=1n(xi.wi) \leq W \sum n=1n(xi.wi) \leq W$$

It is clear that an optimal solution must fill the knapsack exactly, otherwise we could add a fraction of one of the remaining items and increase the overall profit.

Thus, an optimal solution can be obtained by

$$\sum n=1n(xi.wi)=W\sum n=1n(xi.wi)=W$$

In this context, first we need to sort those items according to the value of piwipiwi, so that $pi+1wi+1pi+1wi+1 \le piwipiwi$. Here, *x* is an array to store the fraction of items.

Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)

```
for i = 1 to n

do x[i] = 0

weight = 0

for i = 1 to n

if weight + w[i] \leq W then

x[i] = 1

weight = weight + w[i]

else
```

```
x[i] = (W - weight) / w[i]
weight = W
break
return x
```

Analysis

If the provided items are already sorted into a decreasing order of piwipiwi, then the whileloop takes a time in O(n); Therefore, the total time including the sort is in $O(n \log n)$.

Example

Let us consider that the capacity of the knapsack W = 60 and the list of provided items are shown in the following table –

Item	Α	В	С	D
Profit	280	100	120	120
Weight	40	10	20	24
Ratio (piwi)(piwi)	7	10	6	5

As the provided items are not sorted based on piwipiwi. After sorting, the items are as shown in the following table.

Item	В	Α	С	D
Profit	100	280	120	120
Weight	10	40	20	24
Ratio (piwi)(piwi)	10	7	6	5

Solution

After sorting all the items according to piwipiwi. First all of B is chosen as weight of B is less than the capacity of the knapsack. Next, item A is chosen, as the available capacity of the knapsack is greater than the weight of A. Now, C is chosen as the next item. However, the whole item cannot be chosen as the remaining capacity of the knapsack is less than the weight of C.

Hence, fraction of C (i.e. (60 - 50)/20) is chosen.

Now, the capacity of the Knapsack is equal to the selected items. Hence, no more item can be selected.

The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60

And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440

This is the optimal solution. We cannot gain more profit selecting any different combination of items.

3.4 DYNAMIC PROGRAMMING - COIN CHANGE PROBLEM

Objective: Given a set of coins and amount, Write an algorithm to find out how many ways we can make the change of the amount using the coins given.

This is another problem in which i will show you the advantage of <u>Dynamic programming</u> over recursion.

approach:

Recursive Solution:

- We can solve it using recursion.
- For every coin we have an option to include it in solution or exclude it.

Time Complexity : 2ⁿ

Given a value N, if we want to make change for N cents, and we have infinite supply of each of $S = \{ S1, S2, ..., Sm \}$ valued coins, how many ways can we make the change? The order of coins doesn't matter.

For example, for N = 4 and S = $\{1,2,3\}$, there are four solutions: $\{1,1,1,1\},\{1,1,2\},\{2,2\},\{1,3\}$. So output should be 4. For N = 10 and S = $\{2, 5, 3, 6\}$, there are five solutions: $\{2,2,2,2,2\},\{2,2,3,3\},\{2,2,6\},\{2,3,5\}$ and $\{5,5\}$. So the output should be 5.

Optimal Substructure

To count the total number of solutions, we can divide all set solutions into two sets.

1) Solutions that do not contain mth coin (or Sm).

2) Solutions that contain at least one Sm.

Let count(S[], m, n) be the function to count the number of solutions, then it can be written as sum of count(S[], m-1, n) and count(S[], m, n-Sm).

Therefore, the problem has optimal substructure property as the problem can be solved using solutions to sub problems.

2) Overlapping Sub problems

Following is a simple recursive implementation of the Coin Change problem. The implementation simply follows the recursive structure mentioned above. int count(int S[], int m, int n)

// If n is 0 then there is 1 solution
// (do not include any coin)
if (n == 0)

return 1;

{

// If n is less than 0 then no

// solution exists

if (n < 0)

return 0;

// If there are no coins and n

// is greater than 0, then no

// solution exist

```
if (m <=0 && n >= 1)
```

return 0;

// count is sum of solutions (i)

// including S[m-1] (ii) excluding S[m-1]

 $\label{eq:return count(S, m - 1, n) + count(S, m, n-S[m-1]);}$

3.5 MULTISTAGE GRAPH

1. A multistage graph G = (V,E) is a directed graph in which the vertices are portioned into K

> = 2 disjoint sets Vi, $1 \le i \le k$.

- 2. In addition, if < u,v > is an edge in E, then u < = Vi and V \Box Vi+1 for some i, 1<= i < k.
- 3. If there will be only one vertex, then the sets Vi and Vk are such that [Vi]=[Vk] = 1.
- 4. Let 's' and 't' be the source and destination respectively.
- 5. The cost of a path from source (s) to destination (t) is the sum of the costs of the edger on the path.
- 6. The MULTISTAGE GRAPH problem is to find a minimum cost path from 's' to 't'.
- 7. Each set Vi defines a stage in the graph. Every path from 's' to 't' starts in stage-1,

goes to stage-2 then to stage-3, then to stage-4, and so on, and terminates in stage-k. BACKWARD METHOD

- if there one 'K' stages in a graph using back ward approach. we will find out the cost of each & every vertex starting from 1st stage to the kth stage.
- We will find out the minimum cost path from destination to source (ie)[from stage k to stage 1]

PROCEDURE:

- 1. It is similar to forward approach, but differs only in two or three ways.
- 2. Maintain a cost matrix to store the cost of every vertices and a distance matrix to store the minimum distance vertex.
- 3. Find out the cost of each and every vertex starting from vertex 1 up to vertex k.
- 4. To find out the path star from vertex 'k', then the distance array D (k) will give the minimum cost neighbor vertex which in turn gives the next nearest neighbor vertex and proceed till we reach the destination.

STEP:

$Cost(1) = 0 \implies D(1)=0$ $Cost(2) = 9 \implies D(2)=1$ $Cost(3) = 7 \implies D(3)=1$ $Cost(4) = 3 \implies D(4)=1$ $Cost(5) = 2 \implies D(5)=1$
Cost(6) = min(c (2,6) + cost(2), c (3,6) + cost(3)) = min(13,9) cost(6) = 9 =>D(6)=3 Cost(7) = min(c (3,7) + cost(3), c (5,7) + cost(5), c (2,7) + cost(2)) = min(14,13,11) cost(7) = 11 =>D(7)=2
Cost(8) = min(c (2,8) + cost(2), c (4,8) + cost(4), c (5,8) + cost(5)) = min(10,14,10) cost(8) = 10 =>D(8)=2
Cost(9) = min(c (6,9) + cost(6), c (7,9) + cost(7)) = min(15,15) cost(9) = 15 =>D(9)=6
Cost(10)=min(c(6,10)+cost(6),c(7,10)+cost(7)),c(8,10)+cost(8)) =min(14,14,15) cost(10)= 14 =>D(10)=6
Cost(11) = min(c (8,11) + cost(8)) cost(11) = 16 =>D(11)=8
cost(12)=min(c(9,12)+cost(9),c(10,12)+cost(10),c(11,12)+cost(11)) =min(19,16,21) cost(12) = 16 =>D(12)=10

PATH:

Start from vertex-12 D(12) = 10

D(10) = 6D(6) = 3D(3) = 1

So the minimum cost path is,

13 33 65 10<u>3</u> 12

The cost is 16.

ALGORITHM : BACKWARD METHOD

Algorithm BGraph (G,k,n,p)

```
// The I/p is a k-stage graph G=(V,E) with 'n' vertex.
// Indexed in order of stages E is a set of edges.
// and c[i,J] is the cost of<i,j>,p[1:k] is a minimum cost path.
{
    bcost[1]
    =0.0;
    for j=2
    to n do
    {
      //compute bcost[j],
      // let 'r' be the vertex such that <r,j> is an edge of 'G' &
      // bcost[r]+c[r,j] is minimum.
    bcost[j] = bcost[r] +
```

```
bcost[j] = bcost[r] +
c[r,j]; d[j] =r;
}
```

// find a minimum cost path.

```
P[1]=1;

P[k]=n;

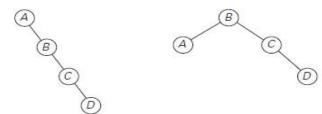
For j= k-1 to 2

do

P[j]=d[p[j+1]]
```

3.5 OPTIMAL BINARY SEARCH TREES

A binary search tree is one of the most important data structures in computer science. One of its principal applications is to implement a dictionary, a set of elements with the



operations of searching, insertion, and deletion. If probabilities of searching for elements of

a set are known—e.g., from accumulated data about past searches—it is natural to pose a question about an optimal binary search tree for which the average number of comparisons in a search is the smallest possible.

As an example, consider four keys *A*, *B*, *C*, and *D* to be searched for with probabilities 0.1, 0.2, 0.4, and 0.3, respectively. Figure 8.7 depicts two out of 14 possible binary search trees containing these keys. The average number of comparisons in a successful search in the first of these trees is $0.1 \cdot 1 + 0.2 \cdot 2 + 0.4 \cdot 3 + 0.3 \cdot 4 = 2.9$, and for the second one it is $0.1 \cdot 2 + 0.2 \cdot 1 +$

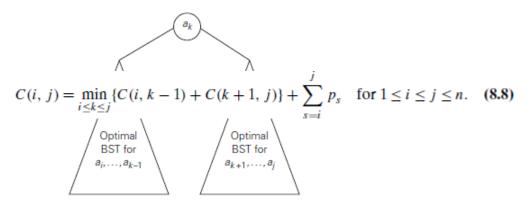
 $0.4 \cdot 2 + 0.3 \cdot 3 = 2.1$. Neither of these two trees is, in fact, optimal.

For our tiny example, we could find the optimal tree by generating all 14 binary search trees with these keys. As a general algorithm, this exhaustive-search approach is unrealistic: the total number of binary search trees with n keys is equal to the nth *Catalan*

$$c(n) = \frac{1}{n+1} {\binom{2n}{n}}$$
 for $n > 0$, $c(0) = 1$,

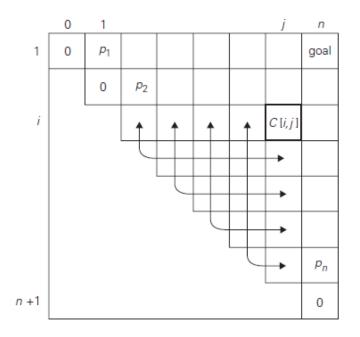
number,

To derive a recurrence underlying a dynamic programming algorithm, we will consider all possible ways to choose a root ak among the keys ai, \ldots, aj . For such a binary search tree (Figure 8.8), the root contains key ak, the left subtree T k-1 i contains keys ai, . . . , ak-1 optimally arranged, and the right subtree Tj k+1 contains keys $ak+1, \ldots, aj$ also optimally arranged.



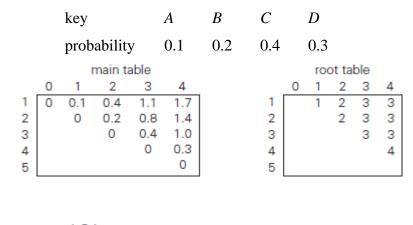
If we count tree levels starting with 1 to make the comparison numbers equal the keys' levels, the following recurrence relation is obtained:

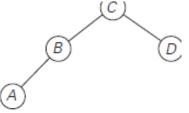
We assume in formula (8.8) that C(i, i - 1) = 0 for $1 \le i \le n + 1$, which can be interpreted as the number of comparisons in the empty tree. Note that this formula implies that $C(i, i) = p_i \quad \text{for } 1 \le i \le n,$



as it should be for a one-node binary search tree containing ai.

The two-dimensional table in Figure 8.9 shows the values needed for computing C(i, j) by formula they are in row *i* and the columns to the left of column *j* and in column *j* and the rows below row *i*. The arrows point to the pairs of entries whose sums are computed in order to find the smallest one to be recorded as the value of C(i, j). This suggests filling the table along its diagonals, starting with all zeros on the main diagonal and given probabilities pi, $1 \le i \le n$, right above it and moving toward the upper right corner.





ALGORITHM *OptimalBST(P* [1..*n*]) for $i \leftarrow 1$ to n do C[i, i -1]**←**0 *C*[*i*, $i] \leftarrow P[i]$ $R[i, i] \leftarrow i$ $C[n+1, n] \leftarrow 0$ for $d \leftarrow 1$ to n - 1 do //diagonal count for $i \leftarrow 1$ to n - d do $j \leftarrow i$ +dminv $al \leftarrow$ ∞ for k←i to j do **if** C[i, k-1] + C[k+1, j] < minval $minval \leftarrow C[i, k-1] + C[k+1, j]; kmin \leftarrow k$ $R[i, j] \leftarrow kmin$ $sum \leftarrow P[i]$; for $s \leftarrow i + 1$ to j do $sum \leftarrow sum + P[s]$ $C[i, j] \leftarrow minval + sum$

return *C*[1, *n*], *R*

The algorithm's space efficiency is clearly quadratic; the time efficiency of this version of the algorithm is cubic.

3.6 THE KNAPSACK PROBLEM AND MEMORY FUNCTIONS

Knapsack problem: given *n* items of known weights $w1, \ldots, wn$ and values $v1, \ldots, vn$ and a knapsack of capacity *W*, find the most valuable subset of the items that fit into the knapsack.

To design a dynamic programming algorithm, we need to derive a recurrence relation that expresses a solution to an instance of the knapsack problem in terms of solutions to its smaller subinstances. Let us consider an instance defined by the first *i* items, $1 \le i \le n$, with weights *w*1, .

..., *wi*, values v1, ..., vi, and knapsack capacity j, $1 \le j \le W$. Let F(i, j) be the value of an optimal solution to this instance, i.e., the value of the most valuable subset of the first *i* items

that fit into the knapsack of capacity j. We can divide all the subsets of the first i items that fit the knapsack of capacity j into two categories: those that do not include the ith item and those that do. Note the following:

I. Among the subsets that do not include the *i*th item, the value of an optimal subset is, by definition, F(i - 1, j).

2. Among the subsets that do include the *i*th item (hence, $j - wi \ge 0$), an optimal subset is made up of this item and an optimal subset of the first i - 1 items that fits into the knapsack of capacity j - wi. The value of such an optimal subset is vi + F(i - 1, j - wi).

$$F(i, j) = \begin{cases} \max\{F(i-1, j), v_i + F(i-1, j-w_i)\} & \text{if } j - w_i \ge 0, \\ F(i-1, j) & \text{if } j - w_i < 0. \end{cases}$$

It is convenient to define the initial conditions as follows:

F(0, j) = 0 for $j \ge 0$ and F(i, 0) = 0 for $i \ge 0$.

Our goal is to find F(n, W), the maximal value of a subset of the *n* given items that fit into the knapsack of capacity *W*, and an optimal subset itself.

	0	j –w _i	j	W
0	0	0	0	0
i–1 w _i , v _i i	0 0	$F(i-1, j-w_i)$	F(i – 1, j) F(i, j)	
п	0			goal

item	weight	value	
1	2	\$12	
2	1	\$10	capacity $W = 5$.
3	3	\$20	
4	2	\$15	

		capacity j							
	i	0	1	2	3	4	5		
	0	0	0	0	0	0	0		
$w_1 = 2, v_1 = 12$	1	0	0	12	12	12	12		
$w_2 = 1, v_2 = 10$	2	0	10	12	22	22	22		
$w_3 = 3, v_3 = 20$	3	0	10	12	22	30	32		
$w_4 = 2, v_4 = 15$	4	0	10	15	25	30	37		

Thus, the maximal value is F(4, 5) = \$37. We can find the composition of an optimal subset by backtracing the computations of this entry in the table. Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution along with an optimal subset for filling 5 – 2 = 3 remaining units of the knapsack capacity. The value of the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal subset. Since F(2, 3) > F(1, 3), item 2 is a part of an optimal selection, which leaves element F(1, 3 - 1) to specify its remaining composition. Similarly, since F(1, 2) > F(0, 2), item 1 is the final part of the optimal solution {item 1, item 2, item 4}. The

time efficiency and space efficiency of this algorithm are both in $\Theta(nW)$.

Memory Functions

Dynamic programming deals with problems whose solutions satisfy a recurrence relation with overlapping subproblems. The direct top-down approach to finding a solution to such a recurrence leads to an algorithm that solves common subproblems more than once and hence is very inefficient. The classic dynamic programming approach, on the other hand, works bottom up: it fills a table with solutions to *all* smaller subproblems, but each of them is solved only once. An unsatisfying aspect of this approach is that solutions to some of these smaller subproblems are often not necessary for getting a solution to the problem given. Since this drawback is not present in the top-down approach, it is natural to try to combine the strengths of the top-down and bottom-up approaches. The goal is to get a method that solves only subproblems that are

necessary and does so only once. Such a method exists; it is based on using *memory functions*. This method solves a given problem in the top-down manner but, in addition, maintains a table. **ALGORITHM** MFKnapsack(i, j)

if *F*[*i*, *j*] < 0

if j < Weights[i] $value \leftarrow MFKnapsack(i - 1, j)$

else

 $value \leftarrow \max(MFKnapsack(i - 1, j), Values[i] + MFKnapsack(i - 1, j - Weights[i]))$

 $F[i, j] \leftarrow value$

return F[i, j]

		capacity j							
	i	0	1	2	3	4	5		
	0	0	0	0	0	0	0		
$w_1 = 2, v_1 = 12$	1	0	0	12	12	12	12		
$w_2 = 1, v_2 = 10$	2	0	_	12	22		22		
$w_3 = 3, v_3 = 20$	3	0	_	_	22	_	32		
$w_4 = 2, v_4 = 15$	4	0	_	_	_	_	37		

The table in Figure 8.6 gives the results. Only 11 out of 20 nontrivial values (i.e., not those in row 0 or in column 0) have been computed. Just one nontrivial entry, V(1, 2), is retrieved rather than being recomputed.

3.7 GREEDY TECHNIQUE

Change-making problem: give change for a specific amount *n* with the least number of coins of the denominations d1 > d2 > ... > dm used in that locale.

For example, the widely used coin denominations in the United States are d1 = 25 (quarter), d2 = 10 (dime), d3 = 5 (nickel), and d4 = 1 (penny). How would you give change with coins of these denominations of, say, 48 cents?

If you came up with the answer 1 quarter, 2 dimes, and 3 pennies. -Greedyll thinking leads to giving one quarter because it reduces the remaining amount the most, namely, to 23 cents. In the second step, you had the same coins at your disposal, but you could not give a quarter, because it would have violated the problem's constraints. So your best selection in this step was one dime, reducing the remaining amount to 13 cents. Giving one more dime left you

with 3 cents to be given with three pennies. The greedy approach suggests constructing a solution through a sequence of steps, each expanding a partially constructed solution obtained so far, until a complete solution to the problem is reached. On each step the choice made must be:

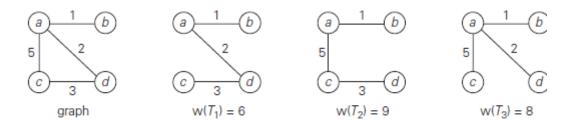
- *feasible*, i.e., it has to satisfy the problem's constraints
- *locally optimal*, i.e., it has to be the best local choice among all feasible choices available on that step
- *irrevocable*, i.e., once made, it cannot be changed on subsequent steps of the algorithm.

3.7PRIM'S ALGORITHM

The following problem arises naturally in many practical situations: given n points,

connect them in the cheapest possible way so that there will be a path between every pair of points.

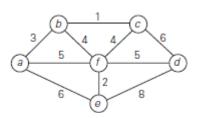
A *spanning tree* of an undirected connected graph is its connected acyclic subgraph (i.e., a tree) that contains all the vertices of the graph. If such a graph has weights assigned to its edges, a *minimum spanning tree* is its spanning tree of the smallest weight, where the *weight* of a tree is defined as the sum of the weights on all its edges. The *minimum spanning tree problem* is the problem of finding a minimum spanning tree for a given weighted connected graph.



Prim's algorithm constructs a minimum spanning tree through a sequence of expanding subtrees. The initial subtree in such a sequence consists of a single vertex selected arbitrarily from the set V of the graph's vertices. On each iteration, the algorithm expands the current tree in the greedy manner by simply attaching to it the nearest vertex not in that tree. After we have identified a vertex u^* to be added to the tree, we need to perform two operations: Move u^* from the set V - VT to the set of tree vertices VT. For each remaining vertex u in V - VT that is connected to u^* by a shorter edge than the u's current distance label, update its labels by u^* and the weight of the edge between u^* and u, respectively.

ALGORITHM Prim(G)

//Prim's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G = \langle V, E \rangle$ //Output: E_T , the set of edges composing a minimum spanning tree of G $V_T \leftarrow \{v_0\}$ //the set of tree vertices can be initialized with any vertex $E_T \leftarrow \varnothing$ for $i \leftarrow 1$ to |V| - 1 do find a minimum-weight edge $e^* = (v^*, u^*)$ among all the edges (v, u)such that v is in V_T and u is in $V - V_T$ $V_T \leftarrow V_T \cup \{u^*\}$ $E_T \leftarrow E_T \cup \{e^*\}$ return E_T



Tree vertices	Remaining vertices	Illustration
a(-, -)	$b(a, 3) c(-, \infty) d(-, \infty)$ e(a, 6) f(a, 5)	a b 1 c 6 d b d f
b(a, 3)	$c(b, 1) d(-, \infty) e(a, 6) f(b, 4)$	a b 1 c 6 d b f
c(b, 1)	d(c, 6) e(a, 6) f(b, 4)	a b 1 c 6 d a b f
f(b, 4)	d(f, 5) e(f, 2)	a b 1 c 6 d a b 1 c 6 d b 1 c 6 d
e(f, 2)	d(f, 5)	a b 1 c 6 d b f b d b d

d(f, 5)

3.8KRUSKAL'S ALGORITHM

Kruskal's algorithm looks at a minimum spanning tree of a weighted connected graph G

= {V, E} as an acyclic subgraph with |V| - 1 edges for which the sum of the edge weights is the smallest. Consequently, the algorithm constructs a minimum spanning tree as an expanding sequence of subgraphs that are always acyclic but are not necessarily connected on the intermediate stages of the algorithm.

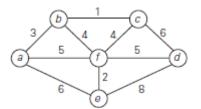
The algorithm begins by sorting the graph's edges in nondecreasing order of their weights. Then, starting with the empty subgraph, it scans this sorted list, adding the next edge on the list to the current subgraph if such an inclusion doesnot create a cycle and simply skipping the edge otherwise.

ALGORITHM Kruskal(G)

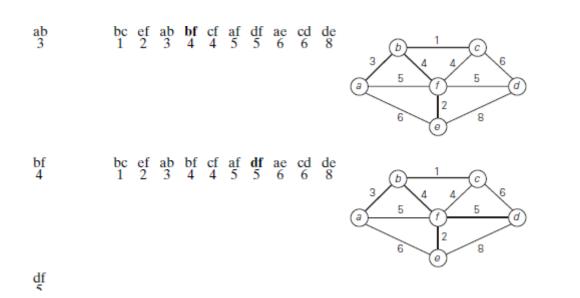
//Kruskal's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G = \langle V, E \rangle$ //Output: E_T , the set of edges composing a minimum spanning tree of Gsort E in nondecreasing order of the edge weights $w(e_{i_1}) \leq \cdots \leq w(e_{i_{|E|}})$ $E_T \leftarrow \emptyset$; ecounter $\leftarrow 0$ //initialize the set of tree edges and its size $k \leftarrow 0$ //initialize the number of processed edges while ecounter < |V| - 1 do

while ecounter < |v| - 1 d

 $k \leftarrow k + 1$ if $E_T \cup \{e_{i_k}\}$ is acyclic $E_T \leftarrow E_T \cup \{e_{i_k}\};$ ecounter \leftarrow ecounter + 1 return E_T



Tree edges			So	rte	d lis	st o	f ed	ges			Illustration
	ьс 1	ef 2	ab 3	bf 4	cf 4	af 5	đf	ae 6	cd 6	de 8	$\begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
bc	bc	ef	ab	bf	cf	af	df	ae	cd	de	$\begin{array}{c} 0 \\ 3 \\ 0 \\ 0 \\ 6 \\ 0 \\ \end{array} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
1	1	2	3	4	4	5	5	6	6	8	
ef	bc	ef	ab	bf	cf	af	df	ae	cd	de	$\begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
2	1	2	3	4	4	5	5	6	6	8	



3.9 DIJKSTRA'S ALGORITHM

Single-source shortest-paths problem: for a given vertex called the *source* in a weighted connected graph, find shortest paths to all its other vertices. The single-source shortest-paths problem asks for a family of paths, each leading from the source to a different vertex in the graph, though some paths may, of course, have edges in common.

- There are several well-known algorithms for finding shortest paths, including Floyd's algorithm. Here, we consider the best- known algorithm for the single-source shortest-paths problem, called *Dijkstra's algorithm*. This algorithm is applicable to undirected and directed graphs with nonnegative weights only.
- Dijkstra's algorithm finds the shortest paths to a graph's vertices in order of their distance from a given source.
- First, it finds the shortest path from the source to a vertex nearest to it, then to a second nearest, and so on. These vertices, the source, and the edges of the shortest paths leading to them from the source form a subtree *Ti* of the given graph.
- Since all the edge weights are nonnegative, the next vertex nearest to the source can be found among the vertices adjacent to the vertices of *Ti*. The set of vertices adjacent to the vertices in *Ti* can be referred to as -fringe vertices^I; they are the candidates from which Dijkstra's algorithm selects the next vertex nearest to the source.

To identify the *i*th nearest vertex, the algorithm computes, for every fringe vertex u, the sum of the distance to the nearest tree vertex v (given by the weight of the edge (v, u)) and the dv of the shortest path from the source to v (previously determined by the algorithm) and then selects the vertex with the smallest such sum.

ALGORITHM *Dijkstra(G, s)*

//Dijkstra's algorithm for single-source shortest paths

//Input: A weighted connected graph $G = \{V, E\}$ with nonnegative weights and its vertex s

//Output: The length dv of a shortest path from s to v and its penultimate vertex pv

```
// for every vertex v in V
Initialize(Q)
                                                        //initialize priority queue to empty
for every vertex v in V
         dv \leftarrow \infty; pv \leftarrow \mathbf{null}
         Insert(Q, v, dv)
                                                        //initialize vertex priority in the priority queue
ds \leftarrow 0; Decrease(Q, s, ds)
                                                        //update priority of s
with ds VT \leftarrow \emptyset
for i \leftarrow 0 to |V| - 1 do
         u * \leftarrow DeleteMin(Q)
                                                        //delete the minimum priority element
         VT \leftarrow VT \cup \{u*\}
         for every vertex u in V - VT that is adjacent to
                   u* do if du* + w(u*, u) < du
                            du \leftarrow du * + w(u *, u); pu \leftarrow u *
                            Decrease(Q, u, du)
```

The time efficiency of Dijkstra's algorithm depends on the data structures used for implementing the priority queue and for representing an input graph itself.

The shortest paths (identified by following nonnumeric labels backward from a destination vertex in the left column to the source) and their lengths (given by numeric labels of the tree vertices) are as follows: 4 0

Tree vertices	Remaining vertices	Illustration
a(-, 0)	$b(a, 3) c(-, \infty) d(a, 7) e(-, \infty)$	
b(a, 3)	$c(b, 3+4) \ d(b, 3+2) \ e(-, \infty)$	
d(b, 5)	c(b, 7) e(d, 5+4)	3 2 5 6 6 7 d 4 e
c(b, 7)	e(d, 9)	3 2 5 6 6 7 d 4 e
e(d, 9)		

From *a* to *b* : *a* - *b* of length
3 From *a* to *d* : *a* - *b* - *d* of
length 5 From *a* to *c* : *a* - *b* -*c* of length 7
From *a* to *e* : *a* - *b* - *d* - *e* of length 9

3.10 Optimal Merge pattern

Merge a set of sorted files of different length into a single sorted file. We need to find an optimal solution, where the resultant file will be generated in minimum time.

If the number of sorted files are given, there are many ways to merge them into a single sorted file. This merge can be performed pair wise. Hence, this type of merging is called as **2-way merge patterns**.

Two-way merge patterns can be represented by binary merge trees. Let us consider a set of **n** sorted files $\{f_1, f_2, f_3, ..., f_n\}$. Initially, each element of this is considered as a single node binary tree. To find this optimal solution, the following algorithm is used.

Algorithm: TREE (n)

for i := 1 to n - 1 do
 declare new node
 node.leftchild := least (list)
 node.rightchild := least (list)
 node.weight) := ((node.leftchild).weight) + ((node.rightchild).weight)
 insert (list, node);
return least (list);

At the end of this algorithm, the weight of the root node represents the optimal cost.

Example

Let us consider the given files, f_1 , f_2 , f_3 , f_4 and f_5 with 20, 30, 10, 5 and 30 number of elements respectively.

If merge operations are performed according to the provided sequence, then

 $M_1 = merge f_1 and f_2 => 20 + 30 = 50$

 $M_2 = merge M_1 and f_3 => 50 + 10 = 60$

 $M_3 = merge M_2 and f_4 => 60 + 5 = 65$

$M_4 = merge M_3 and f_5 => 65 + 30 = 95$

Hence, the total number of operations is

50 + 60 + 65 + 95 = 270

Now, the question arises is there any better solution?

f4, f3, f1, f2, f5

Hence, merge operations can be performed on this sequence

 $M_1 = merge f_4 and f_3 => 5 + 10 = 15$

 M_2 = merge M_1 and $f_1 => 15 + 20 = 35$

 $M_3 = merge M_2 and f_2 => 35 + 30 = 65$

 $M_4 = merge M_3 and f_5 => 65 + 30 = 95$

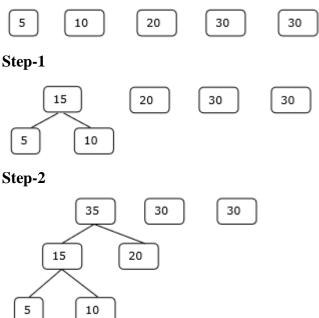
Therefore, the total number of operations is

15 + 35 + 65 + 95 = 210

Obviously, this is better than the previous one.

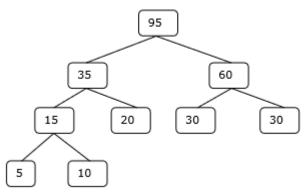
In this context, we are now going to solve the problem using this algorithm.

Initial Set



Step-3

Step-4



Hence, the solution takes 15 + 35 + 60 + 95 = 205 number of comparisons

3.11 HUFFMAN TREES AND CODES

Suppose we have to encode a text that comprises symbols from some *n*-symbol alphabet by assigning to each of the text's symbols some sequence of bits called the *codeword*. For example, we can use a *fixed-length encoding* that assigns to each symbol a bit string of the same length m ($m \ge \log 2 n$). This is exactly what the standard ASCII code does. One way of getting a coding scheme that yields a shorter bit string on the average is based on the old idea of assigning shorter codewords to more frequent symbols and longer codewords to less frequent symbols.

Variable-length encoding, which assigns codewords of different lengths to different symbols, introduces a problem that fixed-length encoding does not have. To avoid this complication, we can limit ourselves to the so-called *prefix-free* (or simply *prefix*) *codes*. In a prefix code, no codeword is a prefix of a codeword of another symbol. Hence, with such an encoding, we can simply scan a bit string until we get the first group of bits that is a codeword for some symbol, replace these bits by this symbol, and repeat this operation until the bit string's end is reached.

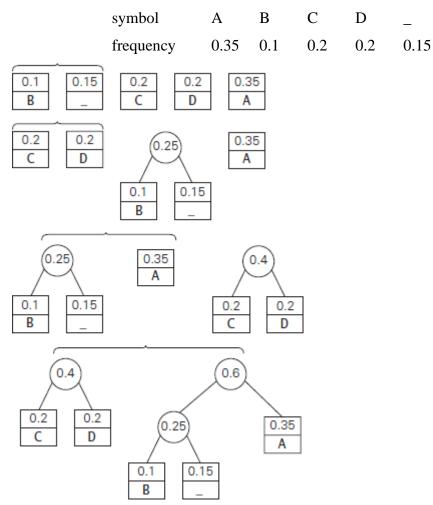
If we want to create a binary prefix code for some alphabet, it is natural to associate the alphabet's symbols with leaves of a binary tree in which all the left edges are labeled by 0 and all the right edges are labeled by 1. The codeword of a symbol can then be obtained by recording the labels on the simple path from the root to the symbol's leaf.

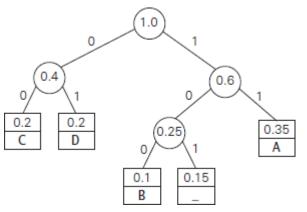
Huffman's algorithm

Step 1 Initialize *n* one-node trees and label them with the symbols of the alphabet given. Record the frequency of each symbol in its tree's root to indicate the tree's *weight*.

Step 2 Repeat the following operation until a single tree is obtained. Find two trees with the smallest weight (ties can be broken arbitrarily, but see Problem 2 in this section's exercises). Make them the left and right subtree of a new tree and record the sum of their weights in the root of the new tree as its weight. A tree constructed by the above algorithm is called a *Huffman tree*. It defines—in the manner described above—a *Huffman code*.

EXAMPLE Consider the five-symbol alphabet {A, B, C, D, _} with the following occurrence frequencies in a text made up of these symbols:





Example of constructing a Huffman coding tree. The resulting codewords are as follows:

symbol	А	В	С	D	_
frequency	0.35	0.1	0.2	0.2	0.15
codeword	11	100	00	01	101

Hence, DAD is encoded as 011101, and 10011011011101 is decoded as BAD_AD.

With the occurrence frequencies given and the codeword lengths obtained, the average number of bits per symbol in this code is

 $2 \cdot 0.35 + 3 \cdot 0.1 + 2 \cdot 0.2 + 2 \cdot 0.2 + 3 \cdot 0.15 = 2.25.$