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UNIT I                                                     INTRODUCTION 

 

Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving – Important Problem 

Types – Fundamentals of the Analysis of Algorithm Efficiency – Analysis Framework – 

Asymptotic Notations and its properties – Mathematical analysis for Recursive and Non- 

recursive algorithms. 

1.1 Algorithm 

 

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for 

obtaining a required output for any legitimate input in a finite amount of time. 

These examples will help us to illustrate several important points: 

• The nonambiguity requirement for each step of an algorithm cannot be compromised. 

• The range of inputs for which an algorithm works has to be specified carefully. 

• The same algorithm can be represented in several different ways. 

• There may exist several algorithms for solving the same problem. 

1.2 FUNDAMENTALS OF ALGORITHMIC PROBLEM SOLVING 

These solutions are not answers but specific instructions for getting answers. It is this 

emphasis on precisely defined constructive procedures that makes computer science distinct from 

other disciplines. In particular, this distinguishes it from theoretical mathematics, whose 

practitioners are typically satisfied with just proving the existence of a solution to a problem and, 

possibly, investigating the solution’s Properties 

Understanding the Problem 

• From a practical perspective, the first thing you need to do before designing an 

algorithm is to understand completely the problem given.  

• Read the problem’s description carefully and ask questions, do a few small 

examples by hand, think about special cases. 

Ascertaining the Capabilities of the Computational Device 

• Algorithms in use today are still destined to be programmed for a computer closely 

resembling the von Neumann machine—a computer architecture outlined by the 

prominent Hungarian-American mathematician John von Neumann (1903– 1957), 

in collaboration with A. Burks and H. Goldstine, in 1946.  

• The essence of this architecture is captured by the so-called random-access 

machine (RAM). Its central assumption is that instructions are executed  one after 

another, one operation at a time. Accordingly, algorithms designed to be executed 
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on such machines are called sequential algorithms. 

 

Algorithm Design Techniques 

An algorithm design technique (or “strategy” or “paradigm”) is a general approach to 

solving problems algorithmically that is applicable to a variety of problems from different areas of 

computing. 

Designing an Algorithm and Data Structures 

• While the algorithm design techniques do provide a powerful set of general 

approaches to algorithmic problem solving, designing an algorithm for a particular 

problem may still be a challenging task.  

• Sometimes, several techniques need to be combined, and there are algorithms that 

are hard to pinpoint as applications of the known design techniques. 

• Even when a particular design technique is applicable, getting an algorithm often 

requires a nontrivial ingenuity on the part the algorithm designer.  

Methods of Specifying an Algorithm 

• Once you have designed an algorithm, you need to specify it in some fashion. In to 

give you an example, Euclid’s algorithm is described in words (in a free and also a 

step-by-step form) and in pseudocode. 

• These are the two options that are most widely used nowadays for specifying 

algorithms. Using a natural language has an obvious appeal; however, the inherent 

ambiguity of any natural language makes a succinct and clear description of 

algorithms surprisingly difficult.  

• Pseudocode is a mixture of a natural language and programming language like 

constructs. Pseudo code is usually more precise than natural language, and its usage 

often yields more succinct algorithm descriptions. Surprisingly, computer scientists 

have never agreed on a single form of pseudo code. 

Analyzing an Algorithm 

• We usually want our algorithms to possess several qualities. After correctness, by 

far the most important is efficiency.  

• In fact, there are two kinds of algorithm efficiency: time efficiency, indicating how 

fast the algorithm runs, and space efficiency, indicating how much extra memory 

it uses. 
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Coding an Algorithm 

• Most algorithms are destined to be ultimately implemented as computer programs.  

• As a practical matter, the validity of programs is still established by testing. Testing 

of computer programs is an art rather than a science, but that does not mean that 

there is nothing in it to learn. 

1.3   IMPORTANT PROBLEM TYPES 

 

In this section, we are going to introduce the most important problem types: 

• Sorting 

• Searching 

• String processing 

• Graph problems 

• Combinatorial problems 

• Geometric problems 

• Numerical problems 

 

Sorting 

• The sorting problem is to rearrange the items of a given list in nondecreasing order. 

Of course, for this problem to be meaningful, the nature of the list items must allow 

such an ordering.  

• As a practical matter, we usually need to sort lists of numbers, characters from an 

alphabet, character strings, and, most important, records similar to those maintained 

by schools about their students, libraries about their holdings, and companies about 

their employees.  

• For example, we can choose to sort student records in alphabetical order of names 

or by student number or by student grade-point average. Such a specially chosen 

piece of information is called a key. 

Searching 

• The searching problem deals with finding a given value, called a search key, in a 

given set (or a multiset, which permits several elements to have the same value). 

• There are plenty of searching algorithms to choose from. They range from the 

straightforward sequential search to a spectacularly efficient but limited binary 

search and algorithms based on representing the underlying set in a different form. 
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String Processing 

• In recent decades, the rapid proliferation of applications dealing with nonnumerical 

data has intensified the interest of researchers and computing practitioners in string-

handling algorithms.  

• A string is a sequence of characters from an alphabet. Strings of particular interest 

are text strings, which comprise letters, numbers, and special characters; bit strings, 

which comprise zeros and ones  

• It should be pointed out, however, that string- processing algorithms have been 

important for computer science for a long time in conjunction with computer 

languages and compiling issues. 

Graph Problems 

One of the oldest and most interesting areas in algorithmics is graph algorithms. Informally, 

a graph can be thought of as a collection of points called vertices, some of which are connected 

by line segments called edges. (A more formal definition is given in the next section.) Graphs are 

an interesting subject to study, for both theoretical and practical reasons.  

• Graphs can be used for modeling a wide variety of applications, including 

transportation, communication, social and economic networks, project scheduling, 

and games. The traveling salesman problem (TSP) is the problem of finding the 

shortest tour through n cities that visits every city exactly once. In addition to 

obvious applications involving route planning, it arises in such modern applications 

as circuit board and VLSI chip fabrication, X-ray crystallography, and genetic 

engineering.  

• The graph-coloring problem seeks to assign the smallest number of colors to the 

vertices of a graph so that no two adjacent vertices are the same color. This problem 

arises in several applications, such as event scheduling: if the events are represented 

by vertices that are connected by an edge if and only if the corresponding events 

cannot be scheduled at the same time, a solution to the graph-coloring problem 

yields an optimal schedule. 

Combinatorial Problems 

From a more abstract perspective, the traveling salesman problem and the graph coloring 

problem are examples of combinatorial problems.  
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These are problems that ask, explicitly or implicitly, to find a combinatorial object—such 

as a permutation, a combination, or a subset— that satisfies certain constraints. A desired 

combinatorial object may also be required to have some additional property such as a maximum 

value or a minimum cost 

Geometric Problems 

Geometric algorithms deal with geometric objects such as points, lines, and polygons. 

The ancient Greeks were very much interested in developing procedures (they did not call them 

algorithms, of course) for solving a variety of geometric problems, including problems of 

constructing simple geometric shapes—triangles, circles, and so on—with an unmarked ruler and 

a compass.  

Numerical Problems 

Numerical problems, another large special area of applications, are problems that involve 

mathematical objects of continuous nature: solving equations and systems of equations, computing 

definite integrals, evaluating functions, and so on. The majority of such mathematical problems 

can be solved only approximately.  

 

1.4 FUNDAMENTALS OF THE ANALYSIS OF ALGORITHM EFFICIENCY 

The Analysis Framework 

 

In this section, we outline a general framework for analyzing the efficiency of algorithms. 

We already mentioned in Section that there are two kinds of efficiency: time efficiency and space 

efficiency. 

Time efficiency, also called time complexity, indicates how fast an algorithm in question runs. 

Space efficiency, also called space complexity, refers to the amount of memory units required by 

the algorithm in addition to the space needed for its input and output.  

Measuring an Input’s Size 

Let’s start with the obvious observation that almost all algorithms run longer on larger inputs. For 

example, it takes longer to sort larger arrays, multiply larger matrices, and so on. Therefore, it is 

logical to investigate an algorithm’s efficiency as a function of some parameter n indicating the 

algorithm’s input size.1  

• For example, it will be the size of the list for problems of sorting, searching, finding the 

list’s smallest element, and most other problems dealing with lists.  

• For the problem of evaluating a polynomial p(x) = anxn + . . . + a0 of degree n 
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• polynomial’s degree or the number of its coefficients, which is larger by 1 than its degree. 

You’ll see from the discussion that such a minor difference is inconsequential for the 

efficiency analysis. 

Units for Measuring Running Time 

• The next issue concerns units for measuring an algorithm’s running time.. Since we are 

after a measure of an algorithm’s efficiency, we would like to have a metric that does not 

depend on these extraneous factors.  

• One possible approach is to count the number of times each of the algorithm’s operations 

is executed. This approach is both excessively difficult and, as we shall see, usually 

unnecessary.  

• The thing to do is to identify the most important operation of the algorithm, called the 

basic operation, the operation contributing the most to the total running time, and compute 

the number of times the basic operation is executed. 

 

Orders of Growth 

• A difference in running times on small inputs is not what really distinguishes efficient 

algorithms from inefficient ones. For example, the greatest common divisor of two small 

numbers, it is not immediately clear how much more efficient Euclid’s algorithm is 

compared to the other two algorithms even why we should care which of them is faster and 

by how much.  

• To find the greatest common divisor of two large numbers that the difference in algorithm 

efficiencies becomes both clear and important. For large values of n, it is the function’s 

order of growth that counts: which contains values of a few functions particularly important 

for analysis of algorithms. 

• The function growing the slowest among these is the logarithmic function. It grows so 

slowly, in fact, that we should expect loga n = loga b logb n 

 

1.5 ASYMPTOTIC NOTATIONS AND BASIC EFFICIENCY CLASSES 

As pointed out in the previous section, the efficiency analysis framework concentrates on 

the order of growth of an algorithm’s basic operation count as the principal indicator of the 

algorithm’s efficiency.  
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• To compare and rank such orders of growth, computer scientists use three notations: 

O (big oh), Ω(big omega), and Ǿ (big theta).  

• In the following discussion, t (n) and g(n) can be any nonnegative functions defined 

on the set of natural numbers. 

• In the context we are interested in, t (n) will be an algorithm’s running time (usually 

indicated by its basic operation count C(n)), and g(n) will be some simple function 

to compare the count with.  

DEFINITION A function t (n) is said to be in O(g(n)), denoted t (n) ε O(g(n)), if t (n) is bounded 

above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c 

and some nonnegative integer n0 such that t (n) ≤ cg(n) for all n ≥ n0. The definition  is illustrated 

in Figure 2.1 where, for the sake of visual clarity, n is extended to be a real number. 

As an example, let us formally prove one of the assertions made in the introduction: 100n 

+ 5 ε O(n2). Indeed, 100n + 5 ≤ 100n + n (for all n ≥ 5) = 101n ≤ 101n2. Thus, as values of the 

constants c and n0 required by the definition, we can take 101 and 5, respectively. 

Note that the definition gives us a lot of freedom in choosing specific values for constants c and 

n0. For example, we could also reason that 100n + 5 ≤ 100n + 5n (for all n ≥ 1) = 105n to complete 

the proof with c = 105 and n0 = 1. 

Ω-notation 

DEFINITION A function t (n) is said to be in _(g(n)), denoted t (n) □ _(g(n)), if t (n) is  bounded 

below by some positive constant multiple of g(n) for all large n, if there exist some positive 

constant c and some nonnegative integer n0 such that 

t (n) ≥ cg(n) for all n ≥ n0. 

The definition is illustrated in Figure 2.2. Here is an example of the formal proof that n3 □ 

_(n2): 

n3 ≥ n2 for all n ≥ 0, 

i.e., we can select c = 1 and n0 = 0 
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Ǿ-notation DEFINITION A function t (n) is said to be in _(g(n)), denoted t (n) □ _(g(n)), if t 

(n) is bounded both above and below by some positive constant multiples of g(n) for all large n, 

i.e., if there exist some positive constants c1 and c2 and some nonnegative integer n0 such that 

c2g(n) ≤ t (n) ≤ c1g(n) for all n ≥ n0. 

The definition is illustrated in Figure 1.3.  

 

For example, let us prove that 

1/2 n(n − 1) = O(n2). First, we prove the right inequality (the upper bound): 

 

THEOREM 
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If t1(n) ε O(g1(n)) and t2(n) ε O(g2(n)), then 

t1(n) + t2(n) ε O(max{g1(n), g2(n)}). 

PROOF The proof extends to orders of growth the following simple fact about four arbitrary 

real numbers a1, b1, a2, b2: if a1 ≤ b1 and a2 ≤ b2, then a1 + a2 ≤ 

2 max{b1, b2}. 

Since t1(n) ε O(g1(n)), there exist some positive constant c1 and some nonnegative integer n1 

such that 

t1(n) ≤ c1g1(n) for all n ≥ n1. 

Similarly, since t2(n) ε O(g2(n)), 

t2(n) ≤ c2g2(n) for all n ≥ n2. 

Let us denote c3 = max{c1, c2} and consider n ≥ max{n1, n2} so that we can use both 

inequalities. Adding them yields the following: 

t1(n) + t2(n) ≤ c1g1(n) + c2g2(n) 

≤ c3g1(n) + c3g2(n) = c3[g1(n) + g2(n)] 

≤ c32 max{g1(n), g2(n)}. 

Hence, t1(n) + t2(n) ε O(max{g1(n), g2(n)}), with the constants c and n0 required by the O 

definition being 2c3 = 2 max{c1, c2} and max{n1, n2}, respectively. It implies that the algorithm’s 

overall efficiency is determined by the part with a higher order of growth, i.e., its least efficient 

part: 

t1(n) ε O(g1(n)) 

t2(n) ε O(g2(n)) 

_ 

t1(n) + t2(n) ε O(max{g1(n), g2(n)}). 

For example, we can check whether an array has equal elements by the following two-part 

algorithm: first, sort the array by applying some known sorting algorithm; second, scan the sorted 

array to check its consecutive elements for equality. If, for example, a sorting algorithm used in 

the first part makes no more than 1/2 n(n − 1)comparisons (and hence is in O(n2)) while the second 

part makes no more than n − 1 comparisons (and hence is in O(n)), the efficiency of the entire 

algorithm will be in O(max{n2, n}) = O(n2). 

 

1.6 MATHEMATICAL ANALYSIS OF NONRECURSIVE ALGORITHMS 

In this section, we systematically apply the general framework outlined in Section to analyzing the 

time efficiency of nonrecursive algorithms. Let us start with a very simple example that 

demonstrates all the principal steps typically taken in analyzing such algorithms. 
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EXAMPLE 1 

Consider the problem of finding the value of the largest element in a list of n numbers. For 

simplicity, we assume that the list is implemented as an array. The following is pseudocode of a 

standard algorithm for solving the problem. 

ALGORITHM MaxElement(A[0..n − 1]) 

Determines the value of the largest element in a given array 

Input: An array A[0..n − 1] of real numbers 

Output: The value of the largest element in A 

maxval ←A[0] 

for i ←1 to n − 1 do 

if A[i]>maxval 

maxval←A[i] 

return maxval 

Let us denote C(n) the number of times this comparison is executed and try to find a formula 

expressing it as a function of size n. The algorithm makes one comparison on each execution of 

the loop, which is repeated for each value of the loop’s variable i within the bounds 1 and n − 1, 

inclusive. Therefore, we get the following sum for C(n): 

This is an easy sum to compute because it is nothing other than 1 repeated n − 1 

times. Thus, 

 

Here is a general plan to follow in analyzing nonrecursive algorithms. 

General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms 

1. Decide on a parameter (or parameters) indicating an input’s size. 

2. Identify the algorithm’s basic operation. (As a rule, it is located in the innermost loop.) 

3. Check whether the number of times the basic operation is executed depends only on the size of  

4. an input. If it also depends on some additional property, the worst-case, average-case, and, if 

necessary, best-case efficiencies have to be investigated separately. 

5. Set up a sum expressing the number of times the algorithm’s basic operation is executed 

6. Using standard formulas and rules of sum manipulation, either find a closedform formula for 
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the count or, at the very least, establish its order of growth. Before proceeding with further 

examples, you may want to review Appendix A, which contains a list of summation formulas and 

rules that are often useful 

in analysis of algorithms. In particular, we use especially frequently two basic rules of sum 

manipulation 

 

1.7 MATHEMATICAL ANALYSIS OF RECURSIVE ALGORITHMS 

In this section, we will see how to apply the general framework for analysis of algorithms to 

recursive algorithms. We start with an example often used to introduce novices to the idea of a 

recursive algorithm. 

EXAMPLE 1 Compute  the factorial function  F(n) = n! for an  arbitrary  nonnegative integer  n. 

Since n!= 1           (n − 1) . n = (n − 1)! . n for n ≥ 1 and 0!= 1 by definition, we can compute F(n) 

= F(n − 1) . n with the following recursive algorithm. 

ALGORITHM F(n) 

Computes n! recursively 

Input: A nonnegative integer n 

Output: The value of n! 

if n = 0 return 1 

else return F(n − 1) □ n 

For simplicity, we consider n itself as an indicator of this algorithm’s input size (rather than the 

number of bits in its binary expansion). The basic operation of the algorithm is multiplication,5 

whose number of executions we denote M(n). Since the function F(n) is computed according to 

the formula 

F(n) = F(n − 1) . n for n > 0, 

the number of multiplicationsM(n) needed to compute it must satisfy the equality 

M(n) = M(n − 1) 
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to computeF(n−1) + 1 

to multiply F(n−1) by n for n > 0. 

Indeed, M(n − 1) multiplications are spent to compute F(n − 1), and one more multiplication is 

needed to multiply the result by n. The last equation defines the sequence M(n) that we need to 

find. This equation defines M(n) not explicitly, i.e., as a function of n, but implicitly as a function 

of its value at another point, namely n − 1. Such equations are called recurrence relations or, for 

brevity, recurrences.  

Recurrence relations  

• Recurrence relations play an important role not only in analysis of algorithms but also in 

some areas of applied mathematics. Our goal now is to solve the recurrence relation M(n) 

= M(n − 1) + 1, i.e., to find an explicit formula for M(n) in terms of n only. 

• Note, however, that there is not one but infinitely many sequences that satisfy this 

recurrence. (Can you give examples of, say, two of them?) To determine a solution 

uniquely, we need an initial condition that tells us the value with which the sequence starts.  

• We can obtain this value by inspecting the condition that makes the algorithm stop its 

recursive calls: 

if n = 0 return 1. 

This tells us two things: 

1.First, since the calls stop when n = 0, the smallest value of n for which this algorithm is executed 

and hence M(n) defined is 0. Second, by inspecting the pseudocode’s exiting line, we can see that 

when n = 0, the algorithm performs no multiplications.  

Therefore, the initial condition we are after is M(0) = 0. the calls stop when n = 0 no multiplications 

when n= 0 Thus, we succeeded in setting up the recurrence relation and initial condition or the 

algorithm’s number of multiplications M(n): 

M(n) = M(n − 1) + 1 for n > 0,  

M(0) = 0. 

Before we embark on a discussion of how to solve this recurrence, let us pause to reiterate an 

important point. We are dealing here with two recursively defined functions. The first is the 

factorial function F(n) itself; it is defined by the recurrence 

F(n) = F(n − 1) . n for every n > 0, 

F(0) = 1. 

2.The second is the number of multiplicationsM(n) needed to compute F(n) by the recursive 
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algorithm whose pseudocode was given at the beginning of the section As we just showedM(n) 

 

is defined by recurrence .Though it is not difficult to “guess” the solution here (what sequence 

starts with 0 when n = 0 and increases by 1 on each step?), it will be more useful to arrive at it 

in a systematic fashion.  

From the  several techniques available for solving recurrence relations, we use what can be called 

the method of backward substitutions. The method’s idea (and the reason for the name) is 

immediately clear from the way it applies to solving our particular recurrence: 

M(n) = M(n − 1) + 1 substitute M(n − 1) = M(n − 2) + 1 

= [M(n − 2) + 1]+ 1= M(n − 2) + 2 substitute M(n − 2) = M(n − 3) + 1 

= [M(n − 3) + 1]+ 2 = M(n − 3) + 3. 

After inspecting the first three lines, we see an emerging pattern, which makes it possible to predict 

not only the next line (what would it be?) but also a general formula for the pattern:M(n)= M(n − 

i) + i.  

Strictly speaking, the correctness of this formula should be proved by mathematical induction, but 

it is easier to get to the solution as follows and then verify its correctness. What remains to be done 

is to take advantage of the initial condition given.  

Since it is specified for n = 0, we have to substitute i = n in the pattern’s formula to get the ultimate 

result of our backward substitutions: 

M(n) = M(n − 1) + 1= . . . = M(n − i) + i = . . . = M(n − n) + n = n. 

Generalizing with investigating the recursive algorithm  for computing n!, we can now outline a 

general plan for investigating recursive algorithms. 


