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CS8491: COMPUTER ARCHITECTURE Department of CSE

UNIT-111
PROCESSOR AND CONTROL UNIT

Basic MIPS implementation — Building datapath — Control Implementation scheme —
Pipelining — Pipelined datapath and control — Handling Data hazards & Control hazards —
Exceptions.

A BASIC MIPS IMPLEMENTATION:

The implementation that includes a subset of the core MIPS instruction set:
e The memory-reference instructions load word (lw) and store word (sw)
e The arithmetic-logical instructions add, sub, AND, OR, and slt
e The instructions branch equal (beq) and jump (j)

An Overview of the Implementation:

For every instruction, the first two steps are identical:
1. Send the program counter (PC) to the memory that contains the code and fetch the
instruction from that memory.
2. Read one or two registers, using fields of the instruction to select the registers to read. For
the load word instruction, we need to read only one register, but most other instructions require
reading two registers.
e After these two steps, the actions required to complete the instruction depend onthe
instruction class.
e For example, all instruction classes, except jump, use the arithmetic-logical unit
(ALU) after reading the registers.
e The following diagram shows the high-level view of a MIPS implementation,
focusing on the various functional units and their interconnection.
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FIGURE 3.1 An abstract view of the implementation of the MIPS subset showing the major
functional units and the major connections between them.
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Operation:

All instructions start by using the program counter to supply the instruction address to
the instruction memory.
After the instruction is fetched, the register operands used by an instruction are
specified by fields of that instruction.
Once the register operands have been fetched, all the instruction classes, except jump,
use the ALU after reading the registers.
e Memory reference instructions (load or store) use the ALU for an address
calculation.
e Arithmetic Logical instructions use the ALU for the operation execution.
e Branches use the ALU for comparison.
The second input to the ALU can come from a register or the immediate field of the
instruction.
After using the ALU, the actions required to complete various instruction classes are
not same.
e If the operation is a memory reference instruction a load or store, the ALU
result is used as an address to either store a value from the registers or load a
value from memory into the registers. The result from the ALU or memory
is written back into the register file.
e |f the instruction is an arithmetic-logical instruction, the result from the ALU
must be written to a register.
e Branches require the use of the ALU output to determine the next instruction
address, which comes either from the ALU (where the PC and branch off set
are summed) or from an adder that increments the current PC by 4.

Basic implementation of MIPS with multiplexer:

We must add a logic element that chooses from among the multiple sources and steers
one of those sources to its destination. This selection is commonly done with a device
called a multiplexor, although this device might better be called a data selector which
selects from among several inputs based on the setting of its control lines.

The control lines are set based primarily on information taken from the instruction being
executed.

The following figure shows the datapath with the three multiplexors added, as well as
control lines for the major functional units.

A control unit is used to determine how to set the control lines for the functional units
and two of the multiplexors.

The top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch
destination address); the multiplexor is controlled by the gate that “ANDs” together the
Zero output of the ALU and a control signal that indicates that the instruction is a
branch.

The middle multiplexor, whose output returns to the register file, is used to steer the
output of the ALU (in the case of an arithmetic-logical instruction) or the output of the
data memory (in the case of a load) for writing into the register file.

Finally, the bottommost multiplexor is used to determine whether the second ALU input
is from the registers (for an arithmetic-logical instruction or a branch) or from the offset
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CS8491: COMPUTER ARCHITECTURE Department of CSE
field of the instruction (for a load or store).

The added control lines are straightforward and determine the operation performed at the ALU, whether the
data memory should read or write, and whether the registers should perform a write operation.
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Logic Design Conventions:

The datapath elements in the MIPS implementation consist of two different types of logic
elements:
1. Combinational Elements:
e The elements that operate on data values are all combinational, which means that
their outputs depend only on the current inputs.
e Given the same input, a combinational element always produces the same output.
e The ALU is an example of a combinational element. Given a set of inputs, it always
produces the same output because it has no internal storage.
2. State Elements:
e It holds information about the state of the processor during the current clock cycle.
e An element contains state if it has some internal storage.
e All registers are state elements.
e A state element has at least two inputs and one output.
e The required inputs are the data value to be written into the element and the clock,
which determines when the data value is written.
e The output from a state element provides the value that was written in an earlier clock
cycle.

Clocking Methodology
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e A clocking methodology defines when signals can be read and when they can be
written.

The approach used to determine when data is valid and stable relative to the clock.
e All state elements including memory, are assumed to be positive edge-triggered; that
IS, they change on the rising clock edge.

State /,-f’" _‘“-u\\ State
element —={ Combinational logic —| elemsnt
1 . 2

Clock cycle

e Figure shows the two state elements surrounding a block of combinational logic,
which operates in a single clock cycle.

e All signals must propagate from state element 1, through the combinational logic, and
to state element 2 in the time of one clock cycle.

e The time necessary for the signals to reach state element 2 defines the length of the
clock cycle.

Edge-triggered clocking methodology:

e Anedge-triggered clocking methodology means that any values stored in a sequential
logic element are updated only on a clock edge, which is a quick transition from low to
high or vice versa.

e An edge-triggered methodology allows us to read the contents of a register, send the
value through some combinational logic, and write that register in the same clock cycle.

-
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Control signal
e A signal used for multiplexor selection or for directing the operation of a functional

unit; contrasts with a data signal, which contains information that is operated on by a
functional unit.

Asserted: The signal is logically high or true.

Deasserted: The signal is logically low or false.

BUILDING A DATAPATH

Datapath
e ltisa collection of function units organized in a manner to execute each class of

instruction.
Datapath elements
e A unit used to operate on or hold data within a processor is called datapath element.
e Inthe MIPS implementation, the datapath elements include the instruction and data
memories, the register file, the ALU, and adders.
How to build a datapath:
e Datapath design begins in examining the major components required to execute each
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class of MIPS instructions.

e First we have to know what the data path elements each instruction needs are, and
also their control signals.

Stage: 1 [Datapath to fetch instruction and increment PC]

e The following diagram shows the datapath elements needed to fetch an
instruction.

e The state elements are the instruction memory, the program counter and
adder.

Instruction memory
e Instruction memory - a memory unit to store the instructions of a program

and supply instructions given an address.
e The instruction memory need only provide read access because the datapath

does not write instructions.

Instruction
address

Instruction |——

Instruction
memory

a. Instruction memory

o The output at any time reflects the contents of the location specified by the
address input, and no read control signal is needed.

Program counter

o The register containing the address of the instruction in the program being
executed is called program counter.
o The program counter is a 32-bit register that is written at the end of every

clock cycle and thus does not need a write control signal.

. Progr=am courvber

Adder
e Adder is used to increment the PC to the address of the next instruction.

e The adder is an ALU wired to always add its two 32-bit inputs and place the sum on
its output. _

c. Adder

Combined all three elements into single stage
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Stage: 2 [Datapath segment for multiport register file and the ALU]

Reaqister File:
e A register file is a collection of registers in which any register can be read or written

by specifying the number of the register in the file.

e R-format instructions have three register operands, so we will need to read two data
words from the register file and write one data word into the register file for each
instruction.

e For each data word to be read from the registers, we need an input to the register file
that specifies the register number to be read and an output from the register file that will
carry the value that has been read from the registers.

e To write a data word, we will need two inputs: one to specify the register number to be
written and one to supply the data to be written into the register.

e The register number inputs are 5 bits wide to specify one of 32 registers (32 = 2°),
whereas the data input and two data output buses are each 32 bits wide.

( 5 Read
register 1 Read A i
- > N ———
Register b, 5 |Read data 1 S
numbers S register 2 |
s . Registers o Osta ALU aLu
.| Wite resuilt |
\ register Read - —
5~ S =
: data 2 L—
pata { —| e J
N
b. ALU

a. Registers

ALU:

e ALU, which takes two 32-bit inputs and produces a 32-bit result, as well as a 1-bit
signal if the result is 0. The inputs carrying the register number to the register file are
all 5 bits wide, whereas the lines carrying data values are 32 bits wide.

e The operation to be performed by the ALU is controlled with the ALU operation signal,
which will be 4 bits control signal.

e ALU provides an output signal that indicates whether the result was 0, we can send the
two register operands to the ALU with the control set to do a subtract.

e Ifthe Zero signal out of the ALU unit is asserted, we know that the two values are equal.
We will be using it only to implement the equal test of branches.
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Combined two elements into single stage
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Stage: 3 [Datapath seament for Branch Instruction]

Sign-extend
e To increase the size of a data item by replicating the high-order sign bit of the original

data item in the high order bits of the larger, destination data item.

£ N
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Branch b. Sign extension unit

e A type of branch where the instruction immediately following the branch is always

executed independent of whether the branch condition is true or false.
Branch taken

e A branch where the branch condition is satisfied and the program counter (PC)

becomes the branch target. All unconditional jumps are taken branches.
Branch not taken or (untaken branch)

e A branch where the branch condition is false and the program counter (PC) becomes

the address of the instruction that sequentially follows the branch.
Branch target address

e The address specified in a branch, which becomes the new program counter (PC) if
the branch is taken.

e Inthe MIPS architecture the branch target is given by the sum of the offset field of the
instruction and the address of the instruction following the branch.

Example:

e The beq instruction has three operands, two registers that are compared for equality,
and a 16-bit off set used to compute the branch target address relative to the branch
instruction address. Ex: beq $t1,$t2,o0ffset.

e To implement this instruction, we must compute the branch target address by adding
the sign-extended offset field of the instruction to the PC.

There are two details in the definition of branch instructions.
e The instruction set architecture specifies that the base for the branch address calculation

8
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is the address of the instruction following the branch i.e., PC+4 the address of the next

instruction.

e The architecture also states that the offset field is shifted left 2 bits so that it is a word
off set; this shift increases the effective range of the offset field by a factor of 4.

Branch Target Address = PC+4+offset (Shifted left 2 bits)

e The branch datapath must perform two operations: Compute the branch target
address and compare the register contents.

e To compute the branch target address, the branch datapath includes a sign extension
unit, shifter and an adder.

e Control logic is used to decide whether the incremented PC or branch target should
replace the PC, based on the Zero output of the ALU.
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Combined Diagram:

s
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Stage: 4 [Datapath Segment for L oad Word and Store Word Instructions]
Data Memory
| fMemnrite
Read
— Address datal
Data
Write memaory
—_—
data

e The data memory unit is a state element with inputs for the address and the write data,
and a single output for the read result. It has separate read and write controls to control
the read and write operations.

e Although only one of these may be asserted on any given clock. The memory unit needs
a read and write control signal.

e Consider the MIPS load word and store word instructions, which have the general form
Ex: Iw $t1, offset_value ($t2) or sw $t1, offset_value ($t2).

e These instructions compute a memory address by adding the base register, which is
$t2, to the 16-bit signed off set field contained in the instruction.

e If the instruction is a store, the value to be stored must also be read from the register file
where it resides in $t1.

e Ifthe instruction is a load, the value read from memory must be written into the register
file in the specified register, which is $t1.

Building a Datapath with all the stages:

e Now we can combine all the pieces to make a simple datapath for the core MIPS
architecture by adding the datapath for instruction fetch, the datapath from R-type and
memory instructions, and the datapath for branches.
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The following figure shows the datapath we obtain by composing the separate pieces.
The branch instruction uses the main ALU for comparison of the register operands, so
we must keep the adder for computing the branch target address.

An additional multiplexor is required to select either the sequentially following
instruction address (PC + 4) or the branch target address to be written into the PC.

The control unit must be able to take inputs and generate a write signal for each state
element, the selector control for each multiplexor, and the ALU control.
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A CONTROL IMPLEMENTATION SCHEME

This simple implementation covers load word (lw), store word (sw), branch equal (beq),
and the arithmetic-logical instructions add, sub, AND, OR, and set on less than.

The ALU Control

2020-2021

The MIPS ALU in defines the 6 following combinations of four control inputs:

Q000 AND
ool OR

000 add

0110 subtract
0111 sat on less than
1400 MCOR

Depending on the instruction class, the ALU will need to perform one of these first five
functions.
e For load word and store word instructions, we use the ALU to compute the
memory address by addition.
¢ For the R-type instructions, the ALU needs to perform one of the five actions
(AND, OR, subtract, add, or set on less than), depending on the value of the 6-

11
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bit funct (or function) field in the low-order bits of the instruction

e For branch equal, the ALU must perform a subtraction.

e We can generate the 4-bit ALU control input using a small control unit that has as inputs
the function field of the instruction and a 2-bit control field, which we call ALUOp.

e The 2 bits ALUOp is interpreted as shown in Table.

ALUOp Action
00 loads and stores
01 subtract for beq

determined by the operation encoded in

the funct field

11 --

e The following table shows how to set the ALU control inputs based on the 2-bit ALUOp
control and the 6-bit function code.

Instruction Instruction Desirad ALU control
opcode oparation ALU action imput
Lw ] acdd

10

s word X0 ekl
aW oo store word IO, add Q00
Branch equal iy branch equal KO subtract 0110
R-type 10 add 100000 add o010
Rtype 10 subtract 100010 subtract 0110
R-type 10 AMD 100100 AND 0000
R-type 10 OR 100101 OR Qoo
Rtype 10 set on less than 101010 set on less than 0111

e Here multiple levels of decoding technique is used.
Adv of using multiple levels of decoding:
1. It reduces the size of the main control unit.
2. Use of several smaller units may also increase the speed of the control unit.
Truth table
e From logic, a representation of a logical operation by listing all the values of the
inputs and then in each case showing what the resulting outputs should be.
Don’t-care term
e An element of a logical function in which the output does not depend on the values of
all the inputs. Don’t-care terms may be specified in different ways.
Opcode
e The field that denotes the operation and format of an instruction.
e The op field, is called the opcode, is always contained in bits 31:26. We will refer to
this field as op[5:0].
Designing the Main Control Unit
e Designing other controls than ALU controls begins with identifying the fields of an
instruction and the control lines that are needed for the datapath.
e There are three instruction classes: the R-type, branch, and load-store instructions.
The following diagram shows these formats.
e The two registers to be read are always specified by the rs and rt fields, at positions
25:21 and 20:16. This is true for the R-type instructions, branch equal, and store.

e The 16-bit off set for branch equal, load, and store is always in positions 15:0.
12
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The destination register is in one of two places. For a load it is in bit positions 20:16
(rt), while for an R-type instruction it is in bit positions 15:11 (rd).

Thus, we will need to add a multiplexor to select which field of the instruction is used
to indicate the register number to be written.

Field | 0 | rs | rt | rd shamt funct
Bit positions 3128 25 20:16 15:11 106 5:0

a.

R-type instruction

Fiald AL or 42 rs rt address
Bit positions 3128 25 20:16 15:0
b. Load or store dinstruction

Fiald 4 rs rt address
Bit positions 3128 25 20:16 15:0

C.

Branch instruction

| Awp | Fuecified
| Awopi | Awow | FS | F4 | F3[F2 | FL|F0| Oporatio
X X X X X

0 0 X Q010
X 1 X X X X X X 0110
1 X X X 0 0 0 0 Q010
1 X X X 0 0 1 0 0110
1 X X X 0 1 0 0 0000
1 X X X 0 1 0 1 0001
1 X X X 1 0 1 0 0111

Instruction format for R-format instructions, which all have an opcode of 0. These
instructions have three register operands: rs, rt, and rd. Fields rs and rt are sources, and
rd is the destination. Ex: add, sub, AND, OR, and slt.

The ALU function is in the funct field and is decoded by the ALU control design.
Instruction format for load (opcode = 35ten) and store (opcode = 43ten) instructions.
The register rs is the base register(25:21) that is added to the 16-bit address field to form
the memory address. For loads, rt is the destination register for the loaded value. For
stores, rt is the source register whose value should be stored into memory.

Instruction format for branch equal (opcode =4). The registers rs and rt are the source
registers that are compared for equality.

The 16-bit address field is sign-extended, shifted, and added to the PC + 4 to compute
the branch target address. The following table describes seven other control lines.
These nine control signals (seven from above table and two for ALUOp) can now be
set on the basis of six input signals to the control unit, which are the opcode bits 31 to
26.

When the 1-bit control to a two way multiplexor is asserted, the multiplexor selects the
input corresponding to 1. Otherwise, if the control is deasserted, the multiplexor selects
the O input.

13
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ReqgDst

The register destination numbear for the
Write register comes from the i fizld
{bits 20:16).

The register destination numbsr for the Writs
register comes from the rd field (bits 15:11).

ReqWrite

Mone.

The register on the Write register input is
wiitten with tha valua on tha Writa data input.

ALLSC

The second ALL oparand comes from the
sacond register file output (Read data 2).

The second ALL oparand is the sign-
extendad, lower 16 bits of the instruction.

PCSmc

The PC is replaced by the output of the
adder that computes the value of PC + 4.

The PC is replaced by the output of the addar
that computes the branch target.

MemRead

MNone.

Data memory contents designated by the
address input are put on the Read data output

MemyWrite

Mone.

Data memory contants designated by the
address input are replaced by the value on
the Write data input.

MemtoRag

The value fed to the register Write data
input comes from the ALLL

The value fed to the register Write data input
comes from the data mamory.

The following diagram shows the datapath with the control unit and the control signals.
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Figure: The simple datapath with

the control unit

The input to the control unit is the 6-bit opcode field from the instruction.
The outputs of the control unit consist of three 1-bit signals that are used to control

multiplexors (RegDst, ALUSrc, and MemtoReg).

Three signals for controlling reads and writes in the register file and data memory

(RegWrite, MemRead, and MemWrite), a 1-bit signal used in determining whether to
possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp).

An AND gate is used to combine the branch control signal and the Zero output from

the ALU; the AND gate output controls the selection of the next PC.

2020-2021

14

Jeppiaar Institute of Technology



CS8491: COMPUTER ARCHITECTURE Department of CSE

e Notice that PCSrc is now a derived signal, rather than one coming directly from the
control unit.The control lines is completely determined by the opcode fields of the
instruction as shown below

[ g e = = = P ey ey

Rformat 0 1 0 0 0 1 0
Tw 0 1 1 1 1 0 0 0 0
W X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

e The first row of the table corresponds to the R-format instructions (add, sub, AND, OR,
and slt). For all these instructions, the source register fields are rs and rt, and the
destination register field is rd; this defines how the ALUSrc and RegDst are set.

e An R-type instruction writes a register (Reg-Write = 1), but neither reads nor writes
data memory.

e When the Branch control signal is 0, the PC is unconditionally replaced with PC + 4;
otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also
high.

e The ALUOp field for R-type instructions is set to 10 to indicate that the ALU control
should be generated from the funct field.

e The second and third rows of this table give the control signal settings for Iw and sw.
These ALUSrc and ALUOp fields are set to perform the address calculation.

e The MemRead and MemWrite are set to perform the memory access. Finally, RegDst
and RegWrite are set for a load to cause the result to be stored into the rt register.

e The branch instruction is similar to an R-format operation, since it sends the rs and rt
registers to the ALU. The ALUOp fi eld for branch is set for a subtract (ALU control
= 01), which is used to test for equality.

e Thus, the entry MemtoReg in the last two rows of the table is replaced with X for don’t
care. Don’t cares can also be added to RegDst when RegWrite is 0

Finalizing Control
nm-:r—l-—-r'—l-_“m

Inputs ops
Opd
op3
op2
Cpil
Opo 1
Outputs RegDst 1 il
ALUSrc
MemtoReg
RegWrite
MemRead
MemWrite
Bramch
Al UOp1
ALLOpD a

:I
0
a

[l = e ) R ]

[ =] o]

Sl LR =R =l e e o Nl s U o ) ) ]

D= O|lOl=|—|=]|=|= OO

ol =R =0 =] N

=]
(=]

=1 =] ISR TSR e Y

=

e The top half of the table gives the combinations of input signals that correspond to the
four opcodes, one per column, that determine the control output settings.

e The bottom portion of the table gives the outputs for each of the four opcodes. Thus,
the output RegWrite is asserted for two different combinations of the inputs.

Sinale-cycle implementation: An implementation in which an instruction is executed in one
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2020-2021 Jeppiaar Institute of Technology



CS8491: COMPUTER ARCHITECTURE

clock cycle called single clock cycle implementation.

Operation of the Datapath

Example: add $t1,$t2,$t3

Department of CSE

Step:1 The instruction is fetched, and the PC is incremented.

Step:2 Two registers, $t2 and $t3, are read from the register fi le; also, the main
control unit computes the setting of the control lines during this step.

Step:3 The ALU operates on the data read from the register fi le, using the function
code (bits 5:0, which is the funct field, of the instruction) to generate the

ALU function.

Step:4 The result from the ALU is written into the register fi le using bits 15:11 of
the instruction to select the destination register ($t1).

N
> Add

L

Ingtruction [31—26] |

" J RegDst

\ Branch

\ MeamReaad

MamtoRag

Control

Instruction [15—0]

Instructon [25—-21]
AN =
address Fioad
Instruction [20—16] Roag  datai
Instruction | o A raglstar 2
=101 M| | write Read
Instructien | | nstruction [15-11] g reglster dataz
memory | [¢——— 2|
" | wirtta
data registers

. Example: Iw $t1, offset ($t2)

Instruction [5—0]

Step:1 An instruction is fetched from the instruction memory, and the PC is

incremented.

Step:2 A register ($t2) value is read from the register file.

Step:3 The ALU computes the sum of the value read from the register file and the
sign-extended, lower 16 bits of the instruction (offset).

Step:4 The sum from the ALU is used as the address for the data memory.

Step:5 The data from the memory unit is written into the register file; the register
destination is given by bits 20:16 of the instruction ($t1).
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7 | ReaDst \lemt 2l |
' Branch —
f T MemRead
Instruction [31—2‘5]lc0 ntroil MamioReg
| | aLuon

| Mamyite
J ALLISIC
f Regwrte

Instruction [25—21] Raad
Read registar 1
- " address Read
Instruction [20—16] Road data 1 -
raglster 2
Instr[l.g:._'ltl_nmn L gy | e
M write FtE-l'I:j i)
instructien | | |instruction [15-11] % || register 959 = M
X ol
) X
]

MEmaory
IJT)"" Write -
data Reglsters

Instruction [15-0] 16 é.;;.\u 4 “J

Zaro

ALY 2 L)
resuft [T

32 d
" e .| ALY
{“‘“d |control|

e
Instruction [S—0] I

Example: beq $t1, $t2, offset

Step:1 An instruction is fetched from the instruction memory, and the PC is

incremented.

Step:2 Two registers, $t1 and $t2, are read from the register fi le.

Step:3 The ALU performs a subtract on the data values read from the register file. The
value of PC + 4 is addedto the sign-extended, lower 16 bits of the instruction
(offset) shift ed left by two; the result is the branch target address.

Step:4 The Zero result from the ALU is used to decide which adder result to store into
the PC.

_..\\‘\_“
>Md
4 —-/

RegDst
| % _Branch

| | MemRead

Instruction [31—25] | MemtoReg
[ -Il,ontrc-l ELUOD

| MemwWrita

[TALUSIC
T Regwte
Instruction [25-21] Raad
Raad
L s P register 1 goaq
Instruction [20—16] Reoaq  datal
instruction | | I £ | redlster 2 >A.Lu
[=1-0] M| | write Raad oy ALU _é.d-:lrmp.'f}l:gl ]
hsiructl:n Instructon (15—11]| x [ | register data2 M S Ml
W1 N x K
| WWTite -] - (5]
1725t registers : wite Data ||
Qata TMEMOTy
T,
Instruction [15-0] | slgn- { aLu J

w I._CGI'IUO|_.
'-_‘ /

Instructlion [5—0] I
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IMPLEMENTING JUMPS

Field 000010 address
Bit positions 31:26 2510

e The jump instruction, looks somewhat like a branch instruction but computes the target
PC differently and is not conditional.

e The upper 4 bits of the address that should replace the PC come from the PC of the
jump instruction plus 4.

e Thus, we can implement a jump by storing into the PC the concatenation of the upper
4 bits of the current PC + 4 (these are bits 31:28 of the sequentially following instruction
address)

e Anadditional multiplexor (at the upper right) is used to choose between the jump target
and either the branch target or the sequential instruction following this one.

e This multiplexor is controlled by the jump control signal. The jump target address is
obtained by shifting the lower 26 bits of the jump instruction left 2 bits, effectively
adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC + 4 as
the high-order bits, thus yielding a 32-bit address.

Instruction [25-0] "gh;I;t\'- Jump address [31-0] /J
N "l |
T 2628 |oc.apion L
AddH— & M
X
4— 0
insinuction 31-201 I-C:-l'utru:ul. : = -
i legWV
o B
Instruction | [/ Zero |-
[31-0]
Instruction { ]
memory | |e
| N
. ..&LL ) | ||

\ contro |

AN OVERVIEW OF PIPELINING

Pipelining:

An implementation technique in which multiple instructions are overlapped in execution is
called pipeline. The different pipelining stages are,

1. Fetch - Fetch instruction from memory.

18
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2. Decode - Read registers while decoding the instruction. The regular format of MIPS

instructions allow reading and decoding to occur simultaneously.

3. Execute - Execute the operation or calculate an address.
4. Access - Access an operand in data memory.
5. Write - Write the result into a register.

Four stage Instruction Pipelining

— L1

Clock cycle 1 2 3 4 5 6 7
Instruction

I F, J D, E, W,

I» Fs D> Es W

l_’,« F 3 D_; E;; W 3

Iy Fg Dy Eg Wyu

{(a) Instruction execution divided into four steps

Interstage buffers

D : Decode
F : Feich instruction E: Execute W : Write
azss = = < = -
instruction and fetch operation results
operands

Bl B2 B3

(b) Hardware organization

Hardware units are organized into stages:
e Execution in each stage takes exactly 1 clock period. Stages are separated by pipeline
registers that preserve and pass partial results to the next stage.
Performance = complexity + cost.
e The pipeline approach brings additional expense plus its own set of problems and
complications, called hazards.
Pipeline Performance (or) Speedup
e The potential increase in performance resulting from pipelining is proportional to the
number of pipeline stages.
e |f all the stages take about the same amount of time and there is enough work to do,
then the speed-up due to pipelining is equal to the number of stages in the pipeline.
o If the stages are perfectly balanced, then the time between instructions on the
pipelined processor — assuming ideal conditions — is equal to
Time between instruction

nonpipclined

Number of pipe stages

Time between instructions

pipelined =

e A pipelined processor allows multiple instructions to execute at once, and each
instruction uses a different functional unit in the datapath. This increases throughput, so
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programs can run faster. One instruction can finish executing on every clock cycle, and

simpler stages also lead to shorter cycle times.

Example — Single-Cycle versus Pipelined Performance

e Consider a simple program segment consists of eight instructions: Iw, sw, add, sub,
AND, OR, sltand beg. Compare the average time between instructions of a single- cycle
implementation, in which all instructions take 1 clock cycle, to a pipelined
implementation. The operation times for the major functional units in this example are
200 ps for memory access, 200 ps for ALU operation, and 100 ps for register file read
or write.

e The following table shows the time required for each of the eight instructions. The
single-cycle design must allow for the slowest instruction is lw — so the time required
for every instruction is 800 ps. Thus, the time between the first and fourth instructions
in the non-pipelined design is 3 x 800 ns or 2400 ps.

e Assume that following table shows the time taken by each and every stages of pipeline
for different instruction

Instruction | Register| ALU Data | Register | Total
Instruction class fetch read | operation | access| write time

Load word (1w) 200 ps 100 ps 200 ps 200 ps 100 ps 200 ps
Store word (sw) 200 ps 100 ps 200 ps 200 ps TOO ps
R-format (add, sub, AND, 200 ps 100 ps 200 ps 100 ps 600 ps
0OR, s1t)

Branch (beq) 200 ps 100 ps 200 ps 500 ps
Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800
Order T T T T T T T T T
(in instructions)

Instruction Data
Iw $1, 100($0) fetch  |Reg| ALU access | €9
| i D
Iw $2, 200($0) 800 ps “s,‘:t‘;‘\'m Reg| ALU ac:etzs Reg
Instruction
Iw $3, 300($0) 800 ps fetch
800 ps
Program
execution . 200 400 600 800 1000 1200 1400
Time T T T T T T T
order
(in instructions)
Instructi Dat
Iw $1’ 100($0) nsf;;:ghnon Reg| AL accae:s Reg
| i D
Iw $2, 200($0) 200 ps | "feco" Reg| ALU | 2%  |Reg
Iw $3, 300($0) S00Es | Reg| ALU | DA Igeg

200 ps 200 ps 200 ps 200 ps 200 ps

Figure: Single-Cycle, Non-Pipelined Execution in top versus Pipelined Execution in bottom.
e By comparing above two diagram, it is clear that pipeline process is best and it take

reduce time to execute the instruction.
e Pipelining improves performance by increasing instruction throughput, as opposed to
decreasing the execution time of an individual instruction.
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Six stages in the pipeline:

1. Fetch instruction: Instructions are fetched from the memory into a temporarybuffer
before it gets executed.

2. Decode instruction: The instruction is decoded by the CPU so that the necessary op codes
and operands can be determined.

3. Calculate operand: Based on the addressing scheme used, either operands are directly
provided in the instruction or the effective address has to be calculated.

4. Fetch Operand: Once the address is calculated, the operands need to be fetched from the
address that was calculated. This is done in this phase.

5. Execute Instruction: The instruction can now be executed.

6. Write operand: Once the instruction is executed, the result from the execution needs to be
stored or written back in the memory.

Time

1|2 |3 |4|5|6 |7 |89 |10[11]12[13]14
Instruction | | g1 | DI [ CO | FO | EI [ WO
Instruction 2 FI | DI |CO|FO| EI |WO
Instruction 3 FI | DI [ CO| FO | EI | WO
Instruction 4 FI1 | DI | CO|FO| EI | WO
Instruction 5 FI | DI |CO | FO | EI [WO
Instruction 6 FI | DI |CO|FO | EI |WO
Instruction 7 FI | DI | CO|FO | EI |WO
Instruction 8 F1 | DI | CO | FO | EI |WO
Instruction 9 FI | DI | CO| FO | EI |WO

PIPELINED DATAPATH AND CONTROL

The division of an instruction into five stages means a five-stage pipeline, which in turn
means that up to five instructions will be in execution during any single clock cycle.
1. IF: Instruction fetch
2. ID: Instruction decode and register file read
3. EX: Execution or address calculation
4. MEM: Data memory access
5. WB: Write back
e Each step of the instruction can be mapped onto the datapath from left to right. The only
exceptions are the update of the PC and the write-back step, shown in color, which
sends either the ALU result or the data from memory to the left to be written into the
register file.
e There are, however, two exceptions to this left -to-right flow of instructions:
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1. The write-back stage, which places the result back into the register file in the middle
of the datapath.

2. The selection of the next value of the PC, choosing between the incremented PC
and the branch address from the MEM stage Data fl owing from right to left does
not affect the current instruction;

The first right-to-left flow of data can lead to data hazards and the second leads to

control hazards.

The pipelined version of the datapath:

The following diagram shows the pipelined datapath with the pipeline registers
highlighted.

All instructions advance during each clock cycle from one pipeline register to the
next. The registers are named for the two stages separated by that register.

For example, the pipeline register between the IF and ID stages is called IF/ID.

Notice that there is no pipeline register at the end of the write-back stage. All
instructions must update some state in the processor, the register file, memory, or the
PC.

For example, a load instruction will place its result in 1 of the 32 registers, and any later
instruction that needs that data will simply read the appropriate register.

The pipeline registers separate each pipeline stage. They are labeled by the stages that
they separate; For example, the first is labeled IF/ID because it separates the instruction
fetch and instructions decode stages.

The registers must be wide enough to store all the data corresponding to the lines that
go through them.

For example, the IF/ID register must be 64 bits wide, because it must hold both the 32-
bit instruction fetched from memory and the incremented 32-bit PC address.

IR IVEX EXMEM MEMWEH

T Tucion

Instructicn
mamory

Example: Load Instruction (Iw) Iw $s1, 100($s0)

1. Instruction fetch:

The top portion of Figure shows the instruction being read from memory using the
address in the PC and then being placed in the IF/ID pipeline register.
The PC address is incremented by 4 and then written back into the PC to be ready for

22
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the next clock cycle.
e This incremented address is also saved in the IF/ID pipeline register in case it is needed
later for an instruction, such as beqg.
e The computer cannot know which type of instruction is being fetched, so it must prepare
for any instruction, passing potentially needed information down the pipeline.

b
| |
I t t |

2. Instruction decode and regqister file read:
e The bottom portion of Figure shows the instruction portion of the IF/ID pipeline register

supplying the 16-bit immediate field, which is sign-extended to 32 bits, and the register
numbers to read the two registers.

e All three values are stored in the ID/EX pipeline register, along with the incremented
PC address.

e We again transfer everything that might be needed by any instruction during a later
clock cycle.

(O
| |

e There is no confusion when reading and writing registers, because the contents change
only on the clock edge.

e Although the load needs only the top register in stage 2, the processor doesn’t know
what instruction is being decoded, so it sign-extends the 16-bit constant and reads both
registers into the ID/EX pipeline register.

e We don’t need all three operands, but it simplifies control to keep all three.

3. Execute or address calculation:
e The following figure shows that the load instruction reads the contents of register 1 and
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the sign-extended immediate from the ID/EX pipeline register and adds them using the

ALU. That sum is placed in the EX/MEM pipeline register.

4. Memory access:
e The top portion of figure shows the load instruction reading the data memory using the
address from the EX/MEM pipeline register and loading the data into the MEM/WB

pipeline register.

{
|

5. Write-back:
e The bottom portion of figure shows the final step: Data memory is read using the
address in the EX/MEM pipeline registers, and the data is placed in the MEM/WB
pipeline register.

e Next, data is read from the MEM/WB pipeline register and written into the register file
in the middle of the datapath.

D VEX EXMEN MEMPNE

Bahiciza

Figure: Combined Pipeline Datapath Diagram
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e To specify control for the pipeline, we need only set the control values during each
pipeline stage. Because each control line is associated with a component active in only a
single pipeline stage, we can divide the control lines into five groups according to the
pipeline stage.

e Instruction fetch: The control signals to read instruction memory and to write the PCare
always asserted, so there is nothing special to control in this pipeline stage.

e Instruction decode/register file read: As in the previous stage, the same thing happens at
every clock cycle, so there are no optional control lines to set.

e Execution/address calculation: The signals to be set are RegDst, ALUOp, and ALUSrc.
The signals select the Result register, the ALU operation, and either Read data 2 or a
sign-extended immediate for the ALU.

D IVEX, EXMEM MEMWE

1‘;- ez~
\TJ
(2]
§
i

I

Instruction
MGy

2
e [ =

:
l

—e| WV

“seZ ._

Instruction
(150}

Insiruction
{2016}

Instruction
1511}

:

e This datapath borrows the control logic for PC source, register destination number, and
ALU control. Note that we now need the 6-bit funct field (function code) of the instruction
in the EX stage as input to ALU control, so these bits must also be included in the ID/EX
pipeline register.

e Recall that these 6 bits are also the 6 least significant bits of the immediate field in the
instruction, so the ID/EX pipeline register can supply them from the immediate field since
sign extension leaves these bits unchanged.

load word add 0010
SW store word add [0 R
Branch equal o1 branch egual OO0 subtract o110
B-iype 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
Riype 10 AND 100100 AND 0000
Biype 10 OR 100101 oR o001
R-type 10 set on less than 101010 st on less than 111

e The function of each of seven control signals is defined. The ALU control lines (ALUOp)
are defined in the second column.
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When a 1-bit control to a 2-way multiplexor is asserted, the multiplexor selects the input corresponding to 1.
e Otherwise, if the control is deasserted, the multiplexor selects the 0 input.
e Note that PCSrc is controlled by an AND gate in if the Branch signal and the ALU Zero

signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only

during a beq instruction; otherwise, PCSrc is set to 0.

RegDst The register destination number for the Write The register destination number for the Write register comes
register comes from the rt field (bits 20:16). from the rd field (bits 15:11).
RegWrite None. The register on the Write register input is written with the value
on the Write data input.
ALUSrc The second ALU operand comes from the second | The second ALU operand is the sign-extended, lower 16 bits of
register file output (Read data 2). the instruction.
PCSrc The PC is replaced by the output of the adder that | The PC is replaced by the output of the adder that computes
computes the value of PC + 4. the branch target.
MemRead None. Data memory contents designated by the address input are
put on the Read data output.
MemWrite None. Data memory contents designated by the address input are
replaced by the value on the Write data input.
MemtoReg The value fed to the register Write data input The value fed to the register Write data input comes from the
comes from the ALU. data memory.

Eu-uﬂln-fﬂir.— ulﬂulﬂ.‘lﬂi stage Memory access stage Write-back stage
control lines control lines

R-format i 1 o 8] 8] Q ] i o]
Tw 0 Q o 1 8] 1 4] 1 1
W X o] 4] i 0 Q 1 ) X

beqg X Q 1 8] 1 Q 4] 4] X

e Memory access: The control lines set in this stage are Branch, MemRead, and MemWrite.
The branch equal, load, and store instructions set these signals, respectively. Recall that
PCSrc selects the next sequential address unless control asserts Branch and the ALU result
was 0.

e Write-back: The two control lines are MemtoReg, which decides between sending the
ALU result or the memory value to the register file, and Reg-Write, which writes the chosen

value.
oS =]
Instructi -'
I fon! -
Control : A WB
., ". E x‘ — I I"\r‘ — v 'l'l 3
\-, — E—
IFND IDVEX EX/MEM MEMNWVE

e The control lines for the final three stages. Note that four of the nine control lines are used
in the EX phase, with the remaining five control lines passed on to the EX/MEM pipeline
register extended to hold the control lines; three are used during the MEM stage, and the
last two are passed to MEM/ WB for use in the WB stage.
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Pipeline Hazards
The condition that makes the pipeline to stall is called Hazards. The idle period in the

pipeline execution is called Stall or Bubble.
Types of hazards:
1. Structural Hazard
2. Data Hazard
3. Control Hazard
1. Structural Hazard
e When a planned instruction cannot execute in the proper clock cycle because
the hardware does not support the combination of instructions that are set to
execute.
2. Data Hazards
e Data hazards occur when the pipeline must be stalled because one step must
wait for another to complete.
e When a planned instruction cannot execute in the proper clock cycle because
data that is needed to execute the instruction is not yet available.
e This is because of data dependence between the instructions that has been
overlapped.
Consider the following example
add  $s0, $t0, $t1
sub  $t2, $s0, $t3
¢ In the above instruction one of the operand ($s0) of the sub instruction will be
fetched only after the add instruction store it result in the same register ($s0).
e So that sub instruction is stalled for some clock cycle which makes the
pipeline process to waste the some clock cycle.
3. Control Hazards

e It is also called branch hazard. When the proper instruction cannot execute in
the proper pipeline clock cycle because the instruction that was fetched is not
the one that is needed; that is, the flow of instruction addresses is not what the
pipeline expected.

HANDLING DATA HAZARD:
Data hazard can be handled by using three methods.
Solution to data hazard:
1. Operand forwarding(Hardware)
2. Reordering Code (software)
3. By using stall
1. Operand forwarding (Hardware):
e The primary solution is based on the observation that we don’t need to wait for
the instruction to complete before trying to resolve the data hazard.
e Forwarding Also called bypassing. A method of resolving a data hazard by
retrieving the missing data element from internal buffers rather than waiting for
it to arrive from programmer visible registers or memory.
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No forwarding:

IDVEX EX/MEM MEMAWE

—— - S
—
Registers ALU

™ N r/ Data .
memory u
[
a. No forwarding
With Forwarding:
IDVEX EX/MEM MEMNWWE
A — i R
— M
—— ]
—_— . x
, M e
Registers onwards ALU
| —{ "
:': Data M_\
Ll x Memory u
Ly X
ForwardB .
Rs
[231 =
B I/ﬂ? EX/MEM_RegisterRd
Ra u
i — =
— { F°""";‘:i'_d”'-: =—— | MEM/\WE.RegisterRd

b. With forwarding

e On the top figure are the ALU and pipeline registers before adding forwarding.
On the bottom figure, the multiplexors have been expanded to add the
forwarding paths, and we show the forwarding unit.

e The new hardware is shown in color. This figure is a stylized drawing, however,
leaving out details from the full datapath such as the sign extension hardware.

e Note that the ID/EX.Register Rt field is shown twice, once to connect to the
Mux and once to the forwarding unit, but it is a single signal.

The control values for the forwarding multiplexors in the above diagram

ForwardA = 00 ID/EX The first AL operand comes from the register file.

ForwardA = 10 EX/MEM The first AL operand is forwarded from the prior ALU result.

ForwardA =01 MEM/WE The first AL operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB =10 EX/MEM The second ALU operand is forwarded from the prior AL result.

ForwardB =01 MEM/WE The second ALU operand is forwarded from data memory or an
earlier ALU result.
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Pipeline datapath and control for data hazard:

In the data is still being read from memory in clock cycle 4 while the ALU is
performing the operation for the following instruction.

Something must stall the pipeline for the combination of load followed by an
instruction that reads its result.

Hence, in addition to a forwarding unit, we need a hazard detection unit. It
operates during the ID stage so that it can insert the stall between the load and
its use.

Pipelined dependences in a five-instruction sequence using simplified data paths
to show the dependences

All the dependent actions are shown in color, and “CC 1” at the top of the figure
means clock cycle 1.

The first instruction writes into $2, and all the following instructions read $2.
This register is written in clock cycle 5, so the proper value is unavailable before
clock cycle 5.

The colored lines from the top datapath to the lower ones show the dependences.
Those that must go backward in time are pipeline data hazards.

Data Dependences without data forwarding Technigue:

Program

Time (in clock cycles) -

Value of CC1 CC2 CC3 CC4 CCs CC6 CC7 CcCs CC9
register $2: 10 10 10 10 10/-20 -20 -20 -20 -20

execution

order

(in instructions)

sub $2, $1, $3 @—ﬂ—fﬁi—:b— ‘ 5@
and $12, $2, $5 @— —ﬁe@_jD‘ —Eg]

/ i I
or$13,56, 52 |l g %D =
add $14, 52,52 @— —E?R_Eg[ :D e_g}
sw $15, 100(52 [} —E?j: :D— |l' Regl

Data forwarding Technique:

2020-2021

The dependences between the pipeline registers move forward in time, so it is
possible to supply the inputs to the ALU needed by the AND instruction and
OR instruction by forwarding the results found in the pipeline registers.

The values in the pipeline registers show that the desired value is available
before it is written into the register file.

We assume that the register file forwards values that are read and written during
the same clock cycle, so the add does not stall, but the values come from the
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register file instead of a pipeline register.

o Register file “forwarding” that is, the read gets the value of the write in that

clock cycle.

Program
exacution
order

(in instructions)

sub 52, §1, $3

and $12, §2, 85

or $13, $6, 52

add $14,52, §2

sw 315, 100(32)

e The following diagram highlights the pipeline connections for both the hazard
detection unit and the forwarding unit.

e As before, the forwarding unit controls the ALU multiplexors to replace the
value from a general-purpose register with the value from the proper pipeline
register.

e The hazard detection unit controls the writing of the PC and IF/ID registers plus
the multiplexor that chooses between the real control values and all Os.

e The hazard detection unit stalls and deasserts the control fields if the load-use
hazard test above is true.
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Hazard

[ Hezard DIEX MemRead
— detectio
—=! unit
| IDIEX

7\ ) T1E EXIMEM
i (Contro I u M —=|WE MEMMWEB
IF[ID \_/ - L[ m Lo

IF/ Dl

Registers

Instruction L -
MmOy

[ Insiruction

memary

IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegistarRt Ri
IF/ID.RegisterRd R

— IDVEX. RegistarRt — L, — —
fis Forwaraing |

2. Reordering Code to Avoid Pipeline Stalls:
Consider the following code segment in C:

a=b+e;

c=b+f;

Here is the generated MIPS code for this segment, assuming all variables are in memory and
are addressable as off sets from $t0:
Before Reorder:

Iw $t1, 0($t0)

Iw $t2, 4($t0)

add $t3, $t1,$t2

sw $t3, 12($t0)

Iw $t4, 8($t0)

add $t5, $t1,$t4

sw $t5, 16($t0)

Find the hazards in the preceding code segment and reorder the instructions to avoid any
pipeline stalls.
e Both add instructions have a hazard because of their respective dependence on
the immediately preceding Iw instruction.
¢ Notice that bypassing eliminates several other potential hazards, including the
dependence of the first adds on the first Iw and any hazards for store instructions.
e Moving up the third lw instruction to become the third instruction eliminates
both hazards:
After Reorder:
Iw $t1, 0($t0)
Iw $t2, 4($t0)
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Iw $t4, 8($t0)
add $t3, $t1,$t2
sw $t3, 12($t0)
add $t5, $t1,$t4
sw $t5, 16($t0)

3. Data hazard solved by using Stall

Pipeline stall

Pipeline stall also called bubble. A stall initiated in order to resolve a hazard.

Load-use data hazard

A specific form of data hazard in which the data being loaded by a load instruction has not
yet become available when it is needed by another instruction.

nop
An instruction that does no operation to change state.

Data hazard without stall:

Time (in clock cycles)
CcC1 cCc2 CC3 CC4 CCH5 CC#6 cCcv cCcs8 CcCo

Program

execution

order

(in instructions) _ _

Iw $2, 20($1) E—H—q§§|:|:|:D7

and 54, 52, 85 E—H{j: :D
or $8, $2, $6 El— —E'.r‘“-'ﬂ-' 1 ‘E@I

add $9, $4, 52 @ —E}r_‘:E': I:D' ﬂ_E ;_1}

e The following diagram shows the AND instruction is turned into a nop and all
instructions beginning with the AND instructions are delayed one cycle.

¢ In this example, the hazard forces the AND and OR instructions to repeat in
clock cycle 4 what they did in clock cycle 3: AND reads registers and decodes,
and OR is refetched from instruction memory.

e Ahbubble is inserted beginning in clock cycle 4, by changing the and instruction
to a nop. Note that the and instruction is really fetched and decoded in clock
cycles 2 and 3, but its EX stage is delayed until clock cycle 5.

e Likewise the OR instruction is fetched in clock cycle 3, but its ID stage is
delayed until clock cycle 5. After insertion of the bubble, all the dependences

—=
|

sit $1, $6, 87

-
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go forward in time and no further hazards occur.

Data hazard with stall:

Time (in clock cycles)

CC 1 CcC2 CC3 CcC4 CCS CCé6 CC7 cCs CcC9
Program
execution
order
(in instructions) _ _
— — . —‘ o — bUD_ble
1 ==
L L Ll L =
o |
and $4, $2, $5 [E— —E{E:e‘_} ﬂDM! Ef—’,l
|
| | L) = -
or $8, $2, $6 IE—_{%::D’_E
— — :" —

3. HANDLING CONTROL HAZARDS

e |t isalso called branch hazard. When the proper instruction cannot execute in
the proper pipeline clock cycle because the instruction that was fetched is not
the one that is needed; that is, the flow of instruction addresses is not what the
pipeline expected.

Performance of “Stall on Branch”

e Estimate the impact on the clock cycles per instruction (CPI) of stalling on
branches. Assume all other instructions have a CPI of 1.

Program
execution o 200 400 o600 800 1000 1200 1400 L
order T T T T T T T
(in instructions)
natruction Data
add $4, §5, $6 - Reg| ALU | oo |Reg
. A natruction Data
beg $1,%2, 40 =+—= Reg| ALU °  |Req
200 ps et B0CEsE B
Y \ oy
1 | w A N ol ey ! ™y
(_bubbles{ bubble/( bubble/ bubble/{ bubble/
or §7, $8, 30 & \Insfruction Data
' 400 ps feteh Regl AU | ooy | P8

e This example assumes the conditional branch is taken, and the instruction at
the destination of the branch is the OR instruction.
e There is a one-stage pipeline stall, or bubble, after the branch.

Two schemes for resolving control hazards
33
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1. Branch prediction
2. Delayed branching

1. Branch Prediction

Prediction techniques can be used to check whether a branch will be valid or
not valid. These techniques reduce the branch penalty.
A method of resolving a branch hazard that assumes a given outcome for the
branch called branch prediction.
The common prediction techniques are:

o Predict Never Taken

o Predict Always Taken

o Predict By Opcode

o Taken or Not Taken Branch

o Branch History Table
In the first two approaches if prediction is wrong a page fault or prediction
violation error occurs. The processor then halts prefetching and fetches the
instruction from the desired address.
In the third approach, the prediction is based on the opcode of the branch
instruction.
The fourth and Fifth approaches are dynamic. They depend on history of the
previously executed conditional branch instruction.

Branch prediction Strategies:
(i). Static Branch Prediction Strategy

(ii). Dynamic Branch Prediction Strategy.
(i). Static Branch Prediction

2020-2021

In this strategy branch can be predicted based on branch code types statically.
This means that the probability of branch with respect to a particular branch
type isused to predict the branch. This branch strategy may not produce accurate
results every time.

One improvement over branch stalling is to predict that the branch will not be
taken and thus continue execution down the sequential instruction stream.

If the branch is taken, the instructions that are being fetched and decoded must
be discarded. Execution continues at the branch target.

If branches are untaken half the time, and if it costs little to discard the
instructions, this optimization halves the cost of control hazards.

Discarding instructions, then, means we must be able to flush instructions in the
IF, ID, and EX stages of the pipeline.

We already have the PC value and the immediate field in the IF/ID pipeline
register, so we just move the branch adder from the EX stage to the ID stage;
During ID, we must decode the instruction, decide whether a bypass to the
equality unit is needed, and complete the equality comparison so that if the
instruction is a branch, we can set the PC to the branch target address.

Note that the bypassed source operands of a branch can come from either the
ALU/MEM or MEM/WB pipeline latches.
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Time (in clock cycles)

e For example, if an ALU instruction immediately preceding a branch produces
one of the operands for the comparison in the branch, a stall will be required,
since the EX stage for the ALU instruction will occur after the ID cycle of the
branch.

Example:

36 sub $10, $4, $8

40 beq $1, $3, 7 # PC-relative brancht0 40 + 4 +7* 4 =72
44 and $12, $2, $5

48 or $13, $2, $6

52 add $14, $4, $2

56 slt $15, $6, $7

72 lw $4, 50($7)
e The three sequential instructions that follow the branch will be fetched and
begin execution. Without intervention, those three following instructions will
begin execution before beq branches to Iw at location 72.
Latency (pipeline
e The number of stages in a pipeline or the number of stages between two
instructions during execution.
e Pipelining does not reduce the time it takes to complete an individual
instruction, also called the latency.

e Todiscard instructions in a pipeline, usually due to an unexpected event

cCc1 CcC 2 CC 3 CcC 4 CC 5 CC6 CCT CC8 CcC9

Program
execution

order

{in instructions)

40 beq $1, $3, 28 Er.—l—l:}r :

44 and $12, $2, $5
48 or $13, $6, $2
52 add %14, $2, $2

472 lw $4, 50($7)

——

35
2020-2021 Jeppiaar Institute of Technology



CS8491: COMPUTER ARCHITECTURE Department of CSE

Dynamic Branch Prediction

2020-2021

This strategy uses recent branch history during program execution to predict
whether or not the branch will be taken next time when it occurs. It uses recent
branch information to predict the next branch. This technique is called dynamic
branch prediction.

Prediction of branches at runtime using runtime information.

A branch prediction buffer or branch history table is a small memory
indexed by the lower portion of the address of the branch instruction. The
memory contains a bit that says whether the branch was recently taken or not.
This simple 1-bit prediction scheme has a performance shortcoming: even if a
branch is almost always taken, we can predict incorrectly twice, rather than
once, when it is not taken.

To remedy this weakness, 2-bit prediction schemes are often used. In a 2-bit
scheme, a prediction must be wrong twice before it is changed.

The following diagram shows the finite-state machine for a 2-bit prediction
scheme. A branch prediction buffer can be implemented as a small, special
buffer accessed with the instruction address during the IF pipe stage.

If the instruction is predicted as taken, fetching begins from the target as soon
as the PC is known; it can be as early as the ID stage. Otherwise, sequential
fetching and executing continue. If the prediction turns out to be wrong, the
prediction bits are changed.

Taken

Not taken

Predict taken Predict taken
g Taken
Not taken J I Taken
. Not taken
Predict not taken Predict not taken
Taken a4
|5 Not taken
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2. Delayed branching

a. From before

The slot directly after a delayed branch instruction, which in the MIPS

architecture is filled by an instruction that does not affect the branch.

An instruction that always executes after the branch in the branch delay slot.

The following figure shows the three ways in which the branch delay slot can

be scheduled. The limitations on delayed branch scheduling arise from

1. The restrictions on the instructions that are scheduled into the delay slots.

2. Our ability to predict at compile time whether a branch is likely to be taken
or not.

Delayed branching was a simple and effective solution for a five-stage

pipeline issuing one instruction each clock cycle.

b. From target c. From fall-through

add $s1, $s2. 53

if $s2 = 0 then

sub $t4, $t5, 16 add $s1, $s2, $s3

if =1 = 0 then

Drelay slot

add $s1, Ss2, $s3 Delay slot

if $s1 = O then

Delay siot sub $t4, St5, $16

Becomes

Becomes Becomes

if $s2 = 0 then

add $s1, $s2, Hs3

if $s1 = 0 then

add $s1, $s2, 553

add $s1, $s2Z, $s53

sub $td, St5, St6

iT 51 = 0 then

| sub st4, st5, $t6 |

2020-2021

The top box in each pair shows the code before scheduling; the bottom box
shows the scheduled code.

In (a), the delay slot is scheduled with an independent instruction from before
the branch. This is the best choice.

Strategies (b) and (c) are used when (a) is not possible. In the code sequences
for (b) and (c), the use of $s1 in the branch condition prevents the add instruction
(whose destination is $s1) from being moved into the branch delay slot.

In (b) the branch delay slot is scheduled from the target of the branch; usually
the target instruction will need to be copied because it can be reached by another
path.

Strategy (b) is preferred when the branch is taken with high probability, such as
a loop branch. Finally, the branch may be scheduled from the not-taken fall-
through as in (c).

To make this optimization legal for (b) or (c), it must be OK to execute the sub
instruction when the branch goes in the unexpected direction. By “OK” we
mean that the work is wasted, but the program will still execute correctly.

This is the case, for example, if $t4 were an unused temporary register when the
branch goes in the unexpected direction.
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Branch target buffer:
e A structure that caches the destination PC or destination instruction for a branch.

It is usually organized as a cache with tags, making it more costly than a simple
prediction buffer.
Correlating predictor:

e A branch predictor that combines local behavior of a particular branch and
global information about the behavior of some recent number of executed
branches.

Tournament branch predictor

e A branch predictor with multiple predictions for each branch and a selection

mechanism that chooses which predictor to enable for a given branch.

EXCEPTIONS

e Exceptions and interrupts events other than branches or jumps that change the
normal flow of instruction execution.
Exception
e Exception also called interrupt. An unscheduled event that disrupts program execution
and they are used to detect overflow.
e The two types of exceptions that our current implementation can generate are
execution of an undefined instruction and an arithmetic overflow.
Interrupt
e It isan exception that comes from outside of the processor.
e We use the term interrupt only when the event is externally caused. Here are five
examples showing whether the situation is internally generated by the processor or
externally generated:

Thpeofevemt | Fromwhoro? | MIPS torminology

/0 device request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

Handling Exception:
e The two types of exceptions can occur in the basic MIPS architecture implementation.
1. Execution of an undefined instruction
2. An arithmetic overflow.

Response to an Exception:

e When an exception occurs the processor saves the address of the ending instruction in
the exception program counter (EPC) and then transfer control to the operating system
at some specified address.

e The operating system then takes the appropriate action, which may involve providing
some service to the user program, taking some predefined action in response to an
overflow, or stopping the execution of the program and reporting an error.

e After performing whatever action is required because of the exception, the operating
system can terminate the program or may continue its execution, using the EPC to
determine where to restart the execution of the program.
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Two main methods used to communicate the reason for an exception:
e The first method used in the MIPS architecture is to include a status register (called
the Cause register), which holds a field that indicates the reason for the exception.

e A second method is to use vectored interrupts. In a vectored interrupt, the address to
which control is transferred is determined by the cause of the exception.
For example, to accommodate the two exception types listed above, we might define the
following two exception vector addresses:

Exception vector address (in hex)

Undefined instruction 2000 IIICICICI_ﬁ
Arithmetic overflow 2000 IIIiBCI_ﬁ

Add two additional registers to our current MIPS implementation:

e EPC: A 32-bit register used to hold the address of the affected instruction.

e Cause: A register used to record the cause of the exception. In the MIPS architecture,
this register is 32 bits, although some bits are currently unused.

e Assume there is a five-bit field that encodes the two possible exception sources
mentioned above, with 10 representing an undefined instruction and 12 representing
arithmetic overflow.

Exceptions in a Pipelined Implementation
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Imprecise interrupt
e Imprecise interrupt also called imprecise exception. Interrupts or exceptions in

pipelined computers that is not associated with the exact instruction that was the cause
of the interrupt or exception.
Precise interrupt
e Precise interrupt also called precise exception. An interrupt or exception that is always
associated with the correct instruction in pipelined computers.
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