
JEPPIAAR INSTITUTE OF TECHNOLOGY

“Self-Belief | Self Discipline | Self Respect”

DEPARTMENT

OF

COMPUTER SCIENCE AND ENGINEERING

LECTURE NOTES

CS8491 – COMPUTER ARCHITECTURE

(Regulation 2017)

Year/Semester: II/IV CSE

2020 – 2021

Prepared by

Ms. R. Revathi

Assistant Professor/CSE

CS8491: COMPUTER ARCHITECTURE Department of CSE

1
2020-2021 Jeppiaar Institute of Technology

UNIT – II ARITHMETIC FOR COMPUTERS

Addition and Subtraction – Multiplication – Division – Floating Point Representation –

Floating Point Operations – Subword Parallelism

ALU:

 Arithmetic Logic Unit (ALU). Hardware that performs addition, subtraction, and

usually logical operations such as AND and OR.

 The arithmetic logic unit (ALU) is the brawn of the computer.

Half Adder

Half Adder: is a combinational circuit that performs the addition of two bits, this circuit needs

two binary inputs and two binary

output

s.

Full Adder

 Full Adder is a combinational circuit that performs the addition of three bits (two

significant bits and previous carry).

 It consists of three inputs and two outputs, two inputs are the bits to be added, the

third input represents the carry form the previous position.

 The full adder is usually a component in a cascade of adders, which add 8, 16, etc,

binary numbers.

 An adder must have two inputs for the operands and a single-bit output for the sum

and the second output to pass on the carry, called CarryOut.

CS8491: COMPUTER ARCHITECTURE Department of CSE

2
2020-2021 Jeppiaar Institute of Technology

 The CarryOut from the neighbor adder must be included as an input, we need a third

input. This input is called CarryIn.

Binary Adder (Asynchronous Ripple-Carry Adder)

 A binary adder is a digital circuit that produces the arithmetic sum of two binary

numbers.

 A binary adder can be constructed with full adders connected in cascade with the

output carry form each full adder connected to the input carry of the next full adder in

the chain.

 The four-bit adder is a typical example of a standard component .It can be used in

many application involving arithmetic operations.

 The input carry to the adder is and it ripples through the full adders to the output carry

CS8491: COMPUTER ARCHITECTURE Department of CSE

3
2020-2021 Jeppiaar Institute of Technology

bit binary adder requires full adders

CARRY-LOOK AHEAD ADDER

 Fast adder circuit must speed up the generation of carry signals. Carry look ahead logic

uses the concepts of generating and propagating carries. Where Si is the sum and Ci+1

is the carry out.

CS8491: COMPUTER ARCHITECTURE Department of CSE

4
2020-2021 Jeppiaar Institute of Technology

Adv:

1. Circuit is simplicity

2. Structure is slightly faster

3. Easy to understand

4. To eliminate inter stage carry delay.

Dadv:

1. Carry look-ahead is expensive

Carry Propagation Delay

The sum and carry output of any stage cannot be produced until the input carry occurs. This

leads to a time delay in the addition process.

Parallel Subtractor

 A Parallel Subtractor is a digital circuit capable of finding the arithmetic difference of

two binary numbers that is greater than one bit in length by operating on corresponding

pairs of bits in parallel.

 The parallel subtractor can be designed in several ways including combination of half

and full subtractors, all full subtractors or all full adders with subtrahend complement

input.

CS8491: COMPUTER ARCHITECTURE Department of CSE

5
2020-2021 Jeppiaar Institute of Technology

Advantages of parallel Adder/Subtractor

 The parallel adder/subtractor performs the addition operation faster as compared to

serial adder/subtractor.

 Time required for addition does not depend on the number of bits.

 The output is in parallel form i.e all the bits are added/subtracted at the same time.

 It is less costly.

Disadvantages of parallel Adder/Subtractor

 Each adder has to wait for the carry which is to be generated from the previous adder

in chain.

 The propagation delay(delay associated with the travelling of carry bit) is found to

increase with the increase in the number of bits to be added.

ADDITION AND SUBTRACTION:

 Digits are added bit by bit from right to left, with carries passed to the next digit to the

left.

 Subtraction uses addition. The appropriate operand is simply negated before being

added.

Binary addition:

Let’s try adding 6ten to 7ten in binary.

The following figure shows the sums and carries. The carries are shown in parentheses.

 Binary addition, showing carries from right to left. The rightmost bit adds 1 to 0,

resulting in the sum of this bit being 1 and the carry out from this bit being 0.

 Hence, the operation for the second digit to the right is 0+1+1.

 This generates a 0 for this sum bit and a carry out of 1.

CS8491: COMPUTER ARCHITECTURE Department of CSE

6
2020-2021 Jeppiaar Institute of Technology

 The third digit is the sum of 1+1+1, resulting in a carry out of 1 and a sum bit of 1.

 The fourth bit is 1+0+0, yielding a 1 sum and no carry.

Binary subtraction:

 Subtracting 6ten from 7ten can be done directly

When overflow cannot occur in addition and subtraction?

Case: 1

 When adding operands with different signs, overflow cannot occur. The reason is the

sum must be no larger than one of the operands. For example, -10+4=-6.

 Since the operands fit in 32 bits and the sum is no larger than an operand, the sum must

fit in 32 bits as well. Therefore, no overflow can occur when adding positive and

negative operands.

Case: 2

 When the signs of the operands are the same, overflow cannot occur. To see this,

remember that c – a= c + (-a) because we subtract by negating the second operand and

then add.

 Therefore, when we subtract operands of the same sign we end up by adding operands

of different signs.

When overflow can occur in addition and subtraction?

Case: 1

 Overflow occurs when adding two positive numbers and the sum is negative

Case: 2

 Overflow occurs when adding two negative numbers and the sum is positive. This

spurious sum means a carry out occurred into the sign bit.

Case: 3

 Overflow occurs in subtraction when we subtract a negative number from a positive

number and get a negative result.

Case: 4

 When we subtract a positive number from a negative number and get a positive result.

Such a ridiculous result means a borrow occurred from the sign bit.

CS8491: COMPUTER ARCHITECTURE Department of CSE

7
2020-2021 Jeppiaar Institute of Technology

 Add (add), add immediate (addi), and subtract (sub) cause exceptions on overflow.

 Add unsigned (addu), add immediate unsigned (addiu), and subtract unsigned (subu)

do not cause exceptions on overflow.

Exception:

 Exception also called interrupt on many computers. An unscheduled event that

disrupts program execution; used to detect overflow.

Interrupt:

 An exception that comes from outside of the processor.

EPC:

 MIPS include a register called the Exception Program Counter (EPC) to contain the

address of the instruction that caused the exception.

 The instruction move from system control (mfc0) is used to copy EPC into a general-

purpose register so that MIPS software has the option of returning to the off ending

instruction via a jump register instruction.

MULTIPLICATION

 The first operand is called the multiplicand and the second the multiplier. The final

result is called the product.

 If we ignore the sign bits, the length of the multiplication of an n-bit multiplicand and

an m-bit multiplier is a product that is n+ m bits long.

 That is, n+ m bits are required to represent all possible products.

 For example, Multiplying 1000ten by 1001ten: Multiplicand 1000ten Multiplier

1001ten

1000ten x 1001ten

1000

0000

0000

1000

Product 1001000ten

Case: 1

 Just place a copy of the multiplicand (1 x multiplicand) in the proper place if the

multiplier digit is a 1.

Case: 2

 Place 0 (0 x multiplicand) in the proper place if the digit is 0.

FIRST VERSION OF THE MULTIPLICATION HARDWARE

 The Multiplicand register, ALU, and Product register are all 64 bits wide, with only

the Multiplier register containing 32 bits.

 The 32-bit multiplicand starts in the right half of the Multiplicand register and is

shifted left 1 bit on each step.

 The multiplier is shifted in the opposite direction at each step.

 The algorithm starts with the product initialized to 0.

CS8491: COMPUTER ARCHITECTURE Department of CSE

8
2020-2021 Jeppiaar Institute of Technology

 Control decides when to shift the Multiplicand and Multiplier registers and when to

write new values into the Product register.

Step: 1

Step: 2

 The least significant bit of the multiplier (Multiplier0) determines whether the

multiplicand is added to the Product register.

 If the least significant bit of the multiplier is 1, add the multiplicand to the

product.

 If not, go to the next step. Shift left the multiplicand register by 1 bit.

CS8491: COMPUTER ARCHITECTURE Department of CSE

9
2020-2021 Jeppiaar Institute of Technology

Step: 3

Example:

 Then shift right the multiplier register by 1 bit. These three steps are repeated
32 times to obtain the product.

 If each step took a clock cycle, this algorithm would require almost 100 clock

cycles to multiply two 32-bit numbers.

Using 4-bit numbers to save space, multiply 2ten x 3ten, or 0010two x 0011two.

Flowchart:

CS8491: COMPUTER ARCHITECTURE Department of CSE

10
2020-2021 Jeppiaar Institute of Technology

Refined version of the multiplication hardware:

 Comparing with the first algorithm the Multiplicand register, ALU, and Multiplier

register are all 32 bits wide, with only the Product register left at 64 bits.

 Now the product is shifted right. The separate Multiplier register also disappeared.

CS8491: COMPUTER ARCHITECTURE Department of CSE

11
2020-2021 Jeppiaar Institute of Technology

The multiplier is placed instead in the right half of the Product register.

Signed Multiplication

 First convert the multiplier and multiplicand to positive numbers and then remember

the original signs.

 The algorithms should then be run for 31 iterations, leaving the signs out of the

calculation.

Faster Multiplication

 Hardware designers can now build much faster multiplication hardware. Whether the

multiplicand is to be added or not is known at the beginning of the multiplication by the

32 multiplier bits.

 Faster multiplications are possible by essentially providing one 32-bit adder for each

bit of the multiplier:

 One input is the multiplicand ANDed with a multiplier bit, and the other is the output

of a prior adder.

 To connect the outputs of adders on the right to the inputs of adders on the left, making

a stack of adders 32 high.

 Rather than use a single 32-bit adder 31 times, this hardware “unrolls the loop” to use

31adders and then organizes them to minimize delay.

BOOTH’S BIT-PAIR RECODING OF THE MULTIPLIER.

A=+13 (Multiplicand) AND B= -6 (Multiplier)

Bit-pair recoding halves the maximum number of summands (versions of the multiplicand).

CS8491: COMPUTER ARCHITECTURE Department of CSE

12
2020-2021 Jeppiaar Institute of Technology

Example

Multiplicand Selection Decisions

Multiplication requiring only n/2 summands

BOOTH’S MULTIPLICATION ALGORITHM WITH SUITABLE EXAMPLE

Booth’s Algorithm Principle:

 Performs additions and subtractions of the Multiplicand, based on the value of the

multiplier bits.

 The algorithm looks at two adjacent bits in the Multiplier in order to decide the

operation to be performed.

CS8491: COMPUTER ARCHITECTURE Department of CSE

13
2020-2021 Jeppiaar Institute of Technology

The Multiplier bits are considered from the least significant bit (right-most) to the most significant bit; by default a

0 will be considered at the right of the least significant bit of the multiplier.

 If Multiplicand has Md bits and Multiplier has Mp bits, the result will be stored in a

Md+Mp bit register and will be initialised with 0s

 As repeated operations and shifts are performed on partial results, the result register is

the accumulator (A).

 Booth‘s algorithm gives a procedure for multiplying signed binary integer. It is based

on the fact that strings of 0‘s in the multiplier require no addition but only shifting and

a string of 1‘s in the multiplier require both operations.

Algorithm

The Q0 bit of the register Q and Q-1 is examined:

 If two bits are the same (11 or 00), then all of the bits of the A, Q and Q1 registers are

shifted to the right 1 bit. This shift is called arithmetic shift right.

 If two bits differ i.e., whether 01, then the multiplicand is adder or 10, then the

multiplicand is subtracted from the register A. after that, right shift occurs in the

register A, Q and Q1.

Flowchart of Booth’s Algorithm for 2’s complement multiplication

CS8491: COMPUTER ARCHITECTURE Department of CSE

14
2020-2021 Jeppiaar Institute of Technology

DIVISION ALGORITHM AND HARDWARE:

Dividend:

 A number being divided is called dividend.

Divisor:

 A number that the dividend is divided by is called divisor.

Quotient:

 It is called the primary result of a division.

 A number that when multiplied by the divisor and added to the remainder produces

the dividend is known as quotient.

Remainder:

 It is the secondary result of a division.

 A number that when added to the product of the quotient and the divisor produces the

dividend is known as remainder.

 Divide’s two operands, called the dividend and divisor, and the result, called the

quotient, are accompanied by a second result, called the remainder.

 Here is another way to express the relationship between the components:

Division Hardware:

 The Divisor register, ALU, and Remainder register are all 64 bits wide, with only the

Quotient register being 32 bits.

 The 32-bit divisor starts in the left half of the Divisor register and is shifted right 1 bit

each iteration.

 The remainder is initialized with the dividend.

 Control decides when to shift the Divisor and Quotient registers and when to write the

new value into the Remainder register.

Dividend=Quotient x Divisor + Remainder

CS8491: COMPUTER ARCHITECTURE Department of CSE

15
2020-2021 Jeppiaar Institute of Technology

Divide algorithm:

Step: 1

 It must first subtract the divisor register from the Remainder register and place the

result in the Remainder register.

Step: 2

 Next we performed the comparison in the set on less than instruction.

 If the result is positive, the divisor was smaller or equal to the dividend, so shift the

Quotient register to the left, setting the new rightmost bit to 1.

 If the result is negative, the next step Restore the original value by adding the Divisor

register to the Remainder register and placing the sum in the Remainder register.

 Also shift the Quotient register to the left, setting the new least significant bit to 0

Step: 3

 The divisor is shifted right by 1 bit and then we iterate again.

CS8491: COMPUTER ARCHITECTURE Department of CSE

16
2020-2021 Jeppiaar Institute of Technology

 The remainder and quotient will be found in their registers after the iterations are

complete.

CS8491: COMPUTER ARCHITECTURE Department of CSE

17
2020-2021 Jeppiaar Institute of Technology

Using a 4-bit version of the algorithm to save pages, let’s try dividing 7ten by 2ten, or 0000

0111two by 0010two.

An improved version of the division hardware:

 The Divisor register, ALU, and Quotient register are all 32 bits wide, with only the

Remainder register left at 64 bits.

 Compared to above division hardware, the ALU and Divisor registers are halved and

the remainder is shifted left.

 This version also combines the Quotient register with the right half of the Remainder

register.

Signed Division

 The simplest solution is to remember the signs of the divisor and dividend and then

negate the quotient if the signs disagree.

 The one complication of signed division is that we must also set the sign of the

remainder. Remember that the following equation must always hold:

CS8491: COMPUTER ARCHITECTURE Department of CSE

18
2020-2021 Jeppiaar Institute of Technology

Rule:

 The dividend and remainder must have the same signs, no matter what the

signs of the divisor and quotient.

Faster Division

 There are techniques to produce more than one bit of the quotient per step.

 The SRT division technique tries to predict several quotient bits per step,

using a table lookup based on the upper bits of the dividend and remainder.

 These algorithms use 6 bits from the remainder and 4 bits from the divisor to

index a table that determines the guess for each step.

CS8491: COMPUTER ARCHITECTURE Department of CSE

19
2020-2021 Jeppiaar Institute of Technology

Restoring Division Algorithm

 Step-1: First the registers are initialized with corresponding values (Q = Dividend, M =

Divisor, A = 0, n = number of bits in dividend)

 Step-2: Then the content of register A and Q is shifted right as if they are a single unit

 Step-3: Then content of register M is subtracted from A and result is stored in A

 Step-4: Then the most significant bit of the A is checked if it is 0 the least significant

bit of Q is set to 1 otherwise if it is 1 the least significant bit of Q is set to 0 and value of

register A is restored i.e the value of A before the subtraction with M

 Step-5: The value of counter n is decremented

 Step-6: If the value of n becomes zero we get of the loop otherwise we repeat fro step 2

 Step-7: Finally, the register Q contain the quotient and A contain remainder

CS8491: COMPUTER ARCHITECTURE Department of CSE

20
2020-2021 Jeppiaar Institute of Technology

CS8491: COMPUTER ARCHITECTURE Department of CSE

21
2020-2021 Jeppiaar Institute of Technology

Example: 8 divide by 3=2 (2/3)

The quotient (0010)2 = 2 is in register Q, and the reminder (0010)2 = 2 is in register A.

Non-Restoring Division Algorithm

 Step-1: First the registers are initialized with corresponding values (Q = Dividend, M =

Divisor, A = 0, n = number of bits in dividend)

 Step-2: Check the sign bit of register A

 Step-3: If it is 1 shift left content of AQ and perform A = A+M, otherwise shift left AQ

and perform A = A-M (means add 2’s complement of M to A and store it to A)

 Step-4: Again the sign bit of register A

 Step-5: If sign bit is 1 Q[0] become 0 otherwise Q[0] become 1 (Q[0] means least

significant bit of register Q)

 Step-6: Decrements value of N by 1

 Step-7: If N is not equal to zero go to Step 2 otherwise go to next step

 Step-8: If sign bit of A is 1 then perform A = A+M

 Step-9: Register Q contain quotient and A contain remainder

CS8491: COMPUTER ARCHITECTURE Department of CSE

22
2020-2021 Jeppiaar Institute of Technology

CS8491: COMPUTER ARCHITECTURE Department of CSE

23
2020-2021 Jeppiaar Institute of Technology

FLOATING POINT

Normalized number:

 A number in floating-point notation that has no leading 0s is known as normalized

number. i.e., a number start with a single nonzero digit.

 For example, 1.0ten×10-9 is in normalized scientific notation, but 0.1ten×10-8 and 10.0ten

×10-10 are not.

Binary numbers in scientific notation:

 To keep a binary number in normalized form, we need a base that we can increase or

decrease by exactly the number of bits the number must be shifted to have one nonzero

digit to the left of the decimal point. 1.0two ×2-1

Floating-Point Representation

Floating point:

 Computer arithmetic that represents numbers in which the binary point is not fixed.

Fraction:

 The value, generally between 0 and 1, placed in the fraction field. The fraction is also

called the mantissa.

Exponent:

 In the numerical representation system of floating-point arithmetic, the value that is

placed in the exponent field.

Single precision:

 A floating-point value represented in a single 32-bit word. Floating-point numbers are

usually a multiple of the size of a word.

 Where s is the sign of the floating-point number (1 meaning negative), exponent is the

value of the 8-bit exponent field (including the sign of the exponent), and fraction is the

23-bit number.

 F involves the value in the fraction field and E involves the value in the exponent field.

Format:

Overflow:

 A situation in which a positive exponent becomes too large to fit in the exponent field

is known as overflow.

Underflow:

 A situation in which a negative exponent becomes too large to fit in the exponent field

is known as underflow.

Double precision:

 One way to reduce chances of underflow or overflow is called double, and operations

on doubles are called double precision floating-point arithmetic.

 It has a larger exponent. A floating-point value represented in two 32-bit words.

CS8491: COMPUTER ARCHITECTURE Department of CSE

24
2020-2021 Jeppiaar Institute of Technology

 Where s is still the sign of the number, exponent is the value of the 11-bit exponent

field, and fraction is the 52-bit number in the fraction field.

Format:

IEEE 754 Format:

 MIPS double precision allows numbers almost as small as 2.0ten × 10+308 and almost

as large as 2.0ten × 10-308.

 Although double precision does increase the exponent range.

 Its primary advantage is its greater precision because of the much larger fraction.

 IEEE 754 makes the leading 1-bit of normalized binary numbers implicit.

 Hence, the number is actually 24 bits long in single precision (implied 1 and a 23-bit

fraction), and 53 bits long in double precision (1+52).

 The desirable notation must therefore represent the most negative exponent as 00 …

00two and the most positive as 11 … 11two.

 This convention is called biased notation, with the bias being the number subtracted

from the normal, unsigned representation to determine the real value.

 IEEE 754 uses a bias of 127 for single precision, so an exponent of -1 is represented by

the bit pattern of the value -1+127ten, or 126ten=0111 1110two, and +1 is represented by

1+127, or 128ten = 1000 0000two.

 The exponent bias for double precision is 1023. Biased exponent means that the value

represented by a floating-point number is really

CS8491: COMPUTER ARCHITECTURE Department of CSE

25
2020-2021 Jeppiaar Institute of Technology

Example: 1

CS8491: COMPUTER ARCHITECTURE Department of CSE

26
2020-2021 Jeppiaar Institute of Technology

Example: 2

FLOATING-POINT ADDITION

 Assume that we can store only four decimal digits of the significand and two decimal

digits of the exponent.

Example: 1

Perform floating point addition for the following numbers.

9.999ten x 101 +1.610ten x 10-1

Step 1:

 Compare the exponent of both the operands.

 If it equal add the two operand (significand) .If it is not equal then increase the

smaller exponent.

 i.e., shift the smaller number to the right until its exponent would match the larger

exponent. As per our example

1.610ten x 10-1= 0.1610ten x 100 = 0.01610 ten x 101

 But we can represent only four decimal digits so, after shifting, the number is really

0.016 ten x 101

Step 2:

Now add the Significand

9.999 x 101

0.016 x 101

10.015 x 101

Step 3:

 Normalize the sum, either shifting right and incrementing the exponent or shifting left

and decrementing the exponent.

 This sum is not in normalized scientific notation, so we need to adjust it:

10.015 x 101 = 1.0015 X 102 = 1.0015 X 102

 Whenever the exponent is increased or decreased, we must check for overflow or

underflow. i.e., we must make sure that the exponent still fits in its field.

Step 4:

 Round the significand to the appropriate number of bits.

 If the sum may no longer be normalized and we would need to perform step 3 again.

1.002ten x 102

CS8491: COMPUTER ARCHITECTURE Department of CSE

27
2020-2021 Jeppiaar Institute of Technology

Example: 2

Perform floating point addition for the following numbers.

0.5ten and -0.4375ten

Solution:

Assuming that we keep 4 bits of precision. 0.5ten

Operand 1: Convert the operands to binary

0.5 x 2 =1.0

Scientific Notation

0.1 x 20

Normalizing the above value

1.0 x 2-1

Operand 2: Convert the operands to binary -0.4375ten

0.4375 x 2 = 0.8750

0.8750 x 2 = 1.7500

0.7500 x 2 = 1.5000

1.5000 x 2 = 1.0000

Scientific Notation

0.0111 x 20

Normalizing the above value

1.110 x 2-2

Step 1:

The significand of the number with the lesser exponent (-1.110two x 2-2) is shifted right until

its exponent matches the larger number:

-1.110two x 2-2 = - 0.111two x 2-1

Step 2:

Add the significands

1.000 x 2-1

- 0.111 x 2-1 [Subtraction]

0.001 x 2-1

Step 3: Normalize the sum and checking for overflow or underflow

0.001 x 2-1 = 1.0 x 2-4

Step 4: Round the sum

Then convert the sum to decimal

1.000 x 2-4 = 0.0001two

1 / 24 = 1/16ten= 0.0625ten

1.000 x 2-4

CS8491: COMPUTER ARCHITECTURE Department of CSE

28
2020-2021 Jeppiaar Institute of Technology

Flowchart:

 First, the exponent of one operand is subtracted from the other using the small ALU to

determine which is larger and by how much.

 This difference controls the three multiplexors; from left to right, they select the larger

exponent, the significand of the smaller number, and the significand of the larger

number.

 The smaller significand is shifted right, and then the significands are added together

using the big ALU.

 The normalization step then shifts the sum left or right and increments or decrements

the exponent.

 Rounding then creates the final result, which may require normalizing again to produce

the actual final result.

CS8491: COMPUTER ARCHITECTURE Department of CSE

29
2020-2021 Jeppiaar Institute of Technology

Block Diagram:

FLOATING-POINT MULTIPLICATION

Example: 1

Multiplying decimal numbers in scientific notation:

1.110ten x 1010 x 9.200ten x 10-5

Assume that we can store only four digits of the significand and two digits of the exponent.

Step 1:

 We calculate the exponent of the product by simply adding the exponents of the

operands together:

New exponent = 10 + (-5) = 5

 Let’s do this with the biased exponents as well to make sure we obtain the same

result:

10 + 127 = 137, and -5 + 127 = 122, so New exponent = 137 +122=259

 This result is too large for the 8-bit exponent field.

 The problem is with the bias because we are adding the biases as well as the

exponents.

CS8491: COMPUTER ARCHITECTURE Department of CSE

31
2020-2021 Jeppiaar Institute of Technology

New exponent= (10+127)+(-5+127)=(5+2X127)=259

 To get the correct biased sum when we add biased numbers, we must subtract the bias

from the sum.

 New exponent=137+122-127=259-127=132= (5+127) and 5 is indeed the exponent

we calculated initially.

Step 2:

Next comes the multiplication of the significands:

1.110ten

X 9.200ten

0000

0000

2220

9990

The product is 10212000ten

 Assuming that we can keep only three digits to the right of the decimal point, the

product is 10.212ten x 105

Step 3:

This product is unnormalized, so we need to normalize it:

10.212ten x 105 = 1.0212ten x 106

 After the multiplication, the product can be shifted right one digit and adding 1 to the

exponent.

 At this point, we can check for overflow and underflow. Underflow may occur if both

operands are small, that is, if both have large negative exponents.

Step 4:

Round of the Product

1.021ten x 106

Step 5:

 The sign of the product depends on the signs of the original operands.

 If they are both the same, the sign is positive; otherwise, it’s negative. Hence, the

product is

+1.021ten x 106

Example: 2

Multiple the numbers 0.5ten and -0.4375ten, using the steps in the above algorithm

 Binary equivalent of 0.5ten = 1.000 x 2-1 and -0.4375ten = -1.110 x 2-2

Step 1 :

Adding the Exponents without bias

-1 + (-2) = -3

Or using the biased representation

Step 2 : Multiplying the significands

CS8491: COMPUTER ARCHITECTURE Department of CSE

32
2020-2021 Jeppiaar Institute of Technology

The Product is 1.110000two x 2-3,but we use 4 bits, so it is 1.110 two x 2-3

Step 3:

Normalize the product, as per our example it is already normalized one

1.110 x 2-3

Step 4:

Rounding the product no change

1.110 x 2-3

Step 5:

Since the signs of the original operands differ, make the sign of the product negative.

Hence, the product is

-1.110 x 2-3

Converting to decimal to check our results:

-1.110 x 2-3 = - 0.00111 = 1 /8 + 1 / 16 + 1 / 32 = - 0.21875

Flow Chart:

Guard Bit:

CS8491: COMPUTER ARCHITECTURE Department of CSE

33
2020-2021 Jeppiaar Institute of Technology

 Extra bits kept on the right during intermediate calculations of floating point numbers

is called guard bit and it used to improve rounding accuracy.

Round:

 Method to make the intermediate floating-point result fit the floating-point format.

 The goal is typically to find the nearest number that can be represented in the format.

Sticky Bit:

 A bit used in rounding in addition to guard and round that is set whenever there are

nonzero bits to the right of the round bit.

Subword Parallelism:

 By partitioning the 128-bit adder, a processor could use parallelism to perform

simultaneous operations on short vectors of sixteen 8-bitoperands, eight 16-bit

operands, four 32-bit operands, or two 64-bit operands.

 The cost of such partitioned adders was small.

 Given that the parallelism occurs within a wide word, the extensions are classified as

subword parallelism.

 It is also classified under the more general name of data level parallelism.

 They have been also called vector or SIMD, for single instruction, multiple data.

	9ed198704f8d88b5da51d20140bc7d0d1d69d85937140fc4de92f1a8c08523ba.pdf
	76b6d6787d6f43365a05f4c2deb21743f6e76d79b184894151fe1d2a2ed9f0f2.pdf
	UNIT – II ARITHMETIC FOR COMPUTERS
	ALU:
	Half Adder
	Full Adder
	Binary Adder (Asynchronous Ripple-Carry Adder)
	CARRY-LOOK AHEAD ADDER
	Carry Propagation Delay
	Parallel Subtractor
	Advantages of parallel Adder/Subtractor
	Disadvantages of parallel Adder/Subtractor
	ADDITION AND SUBTRACTION:
	Binary addition:
	Binary subtraction:
	When overflow cannot occur in addition and subtraction? Case: 1
	Case: 2
	When overflow can occur in addition and subtraction? Case: 1
	Case: 2 (1)
	Case: 3
	Case: 4
	Exception:
	Interrupt:
	EPC:
	MULTIPLICATION
	Case: 1
	Case: 2 (2)
	FIRST VERSION OF THE MULTIPLICATION HARDWARE
	Step: 1
	Step: 3
	Flowchart:
	Signed Multiplication
	Faster Multiplication
	BOOTH’S BIT-PAIR RECODING OF THE MULTIPLIER.
	Example
	BOOTH’S MULTIPLICATION ALGORITHM WITH SUITABLE EXAMPLE
	Algorithm
	Flowchart of Booth’s Algorithm for 2’s complement multiplication
	Divisor:
	Quotient:
	Remainder:
	Division Hardware:
	Divide algorithm:
	Step: 2
	Step: 3 (1)
	An improved version of the division hardware:
	Signed Division
	Rule:
	Faster Division
	Restoring Division Algorithm
	Non-Restoring Division Algorithm
	FLOATING POINT
	Binary numbers in scientific notation:
	Floating-Point Representation
	Fraction:
	Exponent:
	Single precision:
	Format:
	Underflow:
	Double precision:
	Format: (1)
	Example: 1
	Example: 1 (1)
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	Example: 2
	Solution:
	Scientific Notation
	Scientific Notation (1)
	1.110 x 2-2
	Step 2: (1)
	1.000 x 2-4 = 0.0001two
	1.000 x 2-4
	Block Diagram:
	Step 1: (1)

	76b6d6787d6f43365a05f4c2deb21743f6e76d79b184894151fe1d2a2ed9f0f2.pdf
	Step 2: (2)
	Step 3: (1)
	Step 4: (1)
	Step 5:
	Example: 2 (1)
	Step 1 :
	Step 3: (2)
	Step 4: (2)
	Step 5: (1)
	Flow Chart:
	Round:
	Sticky Bit:
	Subword Parallelism:

