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UNIT – II ARITHMETIC FOR COMPUTERS 

Addition and Subtraction – Multiplication – Division – Floating Point Representation – 

Floating Point Operations – Subword Parallelism 

ALU: 

 Arithmetic Logic Unit (ALU). Hardware that performs addition, subtraction, and 

usually logical operations such as AND and OR. 

 The arithmetic logic unit (ALU) is the brawn of the computer. 
 

Half Adder 

Half Adder: is a combinational circuit that performs the addition of two bits, this circuit needs 

two binary inputs and two binary 

output 

s. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Full Adder 

 Full Adder is a combinational circuit that performs the addition of three bits (two 

significant bits and previous carry). 

 It consists of three inputs and two outputs, two inputs are the bits to be added, the 

third input represents the carry form the previous position. 

 The full adder is usually a component in a cascade of adders, which add 8, 16, etc, 

binary numbers. 

 An adder must have two inputs for the operands and a single-bit output for the sum 

and the second output to pass on the carry, called CarryOut. 
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 The CarryOut from the neighbor adder must be included as an input, we need a third 

input. This input is called CarryIn. 

 

 
 

 

 

 

 
 

Binary Adder (Asynchronous Ripple-Carry Adder) 

 

 A binary adder is a digital circuit that produces the arithmetic sum of two binary 

numbers. 

 A binary adder can be constructed with full adders connected in cascade with the 

output carry form each full adder connected to the input carry of the next full adder in 

the chain. 

 The four-bit adder is a typical example of a standard component .It can be used in 

many application involving arithmetic operations. 

 The input carry to the adder is and it ripples through the full adders to the output carry 
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bit binary adder requires full adders 

 

 

 

 

 

 
 

 
 

CARRY-LOOK AHEAD ADDER 

 Fast adder circuit must speed up the generation of carry signals. Carry look ahead logic 

uses the concepts of generating and propagating carries. Where Si is the sum and Ci+1 

is the carry out. 
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Adv: 

1. Circuit is simplicity 

2. Structure is slightly faster 

3. Easy to understand 

4. To eliminate inter stage carry delay. 

Dadv: 

1. Carry look-ahead is expensive 

Carry Propagation Delay 

The sum and carry output of any stage cannot be produced until the input carry occurs. This 

leads to a time delay in the addition process. 

Parallel Subtractor 

 A Parallel Subtractor is a digital circuit capable of finding the arithmetic difference of 

two binary numbers that is greater than one bit in length by operating on corresponding 

pairs of bits in parallel. 

 The parallel subtractor can be designed in several ways including combination of half 

and full subtractors, all full subtractors or all full adders with subtrahend complement 

input. 
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Advantages of parallel Adder/Subtractor 

 The parallel adder/subtractor performs the addition operation faster as compared to 

serial adder/subtractor. 

 Time required for addition does not depend on the number of bits. 

 The output is in parallel form i.e all the bits are added/subtracted at the same time. 

 It is less costly. 
 

Disadvantages of parallel Adder/Subtractor 

 Each adder has to wait for the carry which is to be generated from the previous adder 

in chain. 

 The propagation delay( delay associated with the travelling of carry bit) is found to 

increase with the increase in the number of bits to be added. 

ADDITION AND SUBTRACTION: 

 Digits are added bit by bit from right to left, with carries passed to the next digit to the 

left. 

 Subtraction uses addition. The appropriate operand is simply negated before being 

added. 

Binary addition: 

Let’s try adding 6ten to 7ten in binary. 
 

The following figure shows the sums and carries. The carries are shown in parentheses. 
 

 Binary addition, showing carries from right to left. The rightmost bit adds 1 to 0, 

resulting in the sum of this bit being 1 and the carry out from this bit being 0. 

 Hence, the operation for the second digit to the right is 0+1+1. 

 This generates a 0 for this sum bit and a carry out of 1. 
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 The third digit is the sum of 1+1+1, resulting in a carry out of 1 and a sum bit of 1. 

 The fourth bit is 1+0+0, yielding a 1 sum and no carry. 

Binary subtraction: 

 Subtracting 6ten from 7ten can be done directly 
 

When overflow cannot occur in addition and subtraction? 

Case: 1 

 When adding operands with different signs, overflow cannot occur. The reason is the 

sum must be no larger than one of the operands. For example, -10+4=-6. 

 Since the operands fit in 32 bits and the sum is no larger than an operand, the sum must 

fit in 32 bits as well. Therefore, no overflow can occur when adding positive and 

negative operands. 

 

Case: 2 

 When the signs of the operands are the same, overflow cannot occur. To see this, 

remember that c – a= c + (-a) because we subtract by negating the second operand and 

then add. 

 Therefore, when we subtract operands of the same sign we end up by adding operands 

of different signs. 

When overflow can occur in addition and subtraction? 

Case: 1 

 Overflow occurs when adding two positive numbers and the sum is negative 

Case: 2 

 Overflow occurs when adding two negative numbers and the sum is positive. This 

spurious sum means a carry out occurred into the sign bit. 

Case: 3 

 Overflow occurs in subtraction when we subtract a negative number from a positive 

number and get a negative result. 

Case: 4 

 When we subtract a positive number from a negative number and get a positive result. 

Such a ridiculous result means a borrow occurred from the sign bit. 
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 Add (add), add immediate (addi), and subtract (sub) cause exceptions on overflow. 

 Add unsigned (addu), add immediate unsigned (addiu), and subtract unsigned (subu) 

do not cause exceptions on overflow. 

Exception: 

 Exception also called interrupt on many computers. An unscheduled event that 

disrupts program execution; used to detect overflow. 

Interrupt: 

 An exception that comes from outside of the processor. 

EPC: 

 MIPS include a register called the Exception Program Counter (EPC) to contain the 

address of the instruction that caused the exception. 

 The instruction move from system control (mfc0) is used to copy EPC into a general- 

purpose register so that MIPS software has the option of returning to the off ending 

instruction via a jump register instruction. 

 

 

MULTIPLICATION 

 The first operand is called the multiplicand and the second the multiplier. The final 

result is called the product. 

 If we ignore the sign bits, the length of the multiplication of an n-bit multiplicand and 

an m-bit multiplier is a product that is n+ m bits long. 

 That is, n+ m bits are required to represent all possible products. 

 For  example,   Multiplying   1000ten   by  1001ten: Multiplicand 1000ten Multiplier 

1001ten 

1000ten x 1001ten 

1000 

0000 

0000 

1000 

Product 1001000ten 

Case: 1 

 Just place a copy of the multiplicand (1 x multiplicand) in the proper place if the 

multiplier digit is a 1. 

Case: 2 

 Place 0 (0 x multiplicand) in the proper place if the digit is 0. 

FIRST VERSION OF THE MULTIPLICATION HARDWARE 

 The Multiplicand register, ALU, and Product register are all 64 bits wide, with only 

the Multiplier register containing 32 bits. 

 The 32-bit multiplicand starts in the right half of the Multiplicand register and is 

shifted left 1 bit on each step. 

 The multiplier is shifted in the opposite direction at each step. 

 The algorithm starts with the product initialized to 0. 
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 Control decides when to shift the Multiplicand and Multiplier registers and when to 

write new values into the Product register. 

 

Step: 1 

 

 

 
 

Step: 2 

 
 The least significant bit of the multiplier (Multiplier0) determines whether the 

multiplicand is added to the Product register. 

 If the least significant bit of the multiplier is 1, add the multiplicand to the 

product. 

 

 If not, go to the next step. Shift left the multiplicand register by 1 bit.
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Step: 3 

 

 

 
 

Example: 

 Then shift right the multiplier register by 1 bit. These three steps are repeated 
32 times to obtain the product. 

 If each step took a clock cycle, this algorithm would require almost 100 clock 

cycles to multiply two 32-bit numbers. 

Using 4-bit numbers to save space, multiply 2ten x 3ten, or 0010two x 0011two. 
 

 
Flowchart: 
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Refined version of the multiplication hardware: 

 

 Comparing with the first algorithm the Multiplicand register, ALU, and Multiplier 

register are all 32 bits wide, with only the Product register left at 64 bits. 

 Now the product is shifted right. The separate Multiplier register also disappeared. 
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The multiplier is placed instead in the right half of the Product register. 

 

 
Signed Multiplication 

 

 First convert the multiplier and multiplicand to positive numbers and then remember 

the original signs. 

 The algorithms should then be run for 31 iterations, leaving the signs out of the 

calculation. 

Faster Multiplication 
 

 Hardware designers can now build much faster multiplication hardware. Whether the 

multiplicand is to be added or not is known at the beginning of the multiplication by the 

32 multiplier bits. 

 Faster multiplications are possible by essentially providing one 32-bit adder for each 

bit of the multiplier: 

 One input is the multiplicand ANDed with a multiplier bit, and the other is the output 

of a prior adder. 

 To connect the outputs of adders on the right to the inputs of adders on the left, making 

a stack of adders 32 high. 

 Rather than use a single 32-bit adder 31 times, this hardware “unrolls the loop” to use 

31adders and then organizes them to minimize delay. 
 

 

BOOTH’S BIT-PAIR RECODING OF THE MULTIPLIER. 

A=+13 (Multiplicand) AND B= -6 (Multiplier) 

Bit-pair recoding halves the maximum number of summands (versions of the multiplicand). 
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Example 
 

 

Multiplicand Selection Decisions 

 
 

Multiplication requiring only n/2 summands 

 
 

BOOTH’S MULTIPLICATION ALGORITHM WITH SUITABLE EXAMPLE 

Booth’s Algorithm Principle: 

 Performs additions and subtractions of the Multiplicand, based on the value of the 

multiplier bits. 

 The algorithm looks at two adjacent bits in the Multiplier in order to decide the 

operation to be performed. 
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The Multiplier bits are considered from the least significant bit (right-most) to the most significant bit; by default a 

0 will be considered at the right of the least significant bit of the multiplier. 

 If Multiplicand has Md bits and Multiplier has Mp bits, the result will be stored in a 

Md+Mp bit register and will be initialised with 0s 

 As repeated operations and shifts are performed on partial results, the result register is 

the accumulator (A). 

 Booth‘s algorithm gives a procedure for multiplying signed binary integer. It is based 

on the fact that strings of 0‘s in the multiplier require no addition but only shifting and 

a string of 1‘s in the multiplier require both operations. 

Algorithm 

The Q0 bit of the register Q and Q-1 is examined: 

 If two bits are the same (11 or 00), then all of the bits of the A, Q and Q1 registers are 

shifted to the right 1 bit. This shift is called arithmetic shift right. 

 If two bits differ i.e., whether 01, then the multiplicand is adder or 10, then the 

multiplicand is subtracted from the register A. after that, right shift occurs in the 

register A, Q and Q1. 

Flowchart of Booth’s Algorithm for 2’s complement multiplication 
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DIVISION ALGORITHM AND HARDWARE: 

Dividend: 

 A number being divided is called dividend. 

Divisor: 

 A number that the dividend is divided by is called divisor. 

Quotient: 

 It is called the primary result of a division. 

 A number that when multiplied by the divisor and added to the remainder produces 

the dividend is known as quotient. 

Remainder: 

 It is the secondary result of a division. 

 A number that when added to the product of the quotient and the divisor produces the 

dividend is known as remainder. 

 

 

 

 Divide’s two operands, called the dividend and divisor, and the result, called the 

quotient, are accompanied by a second result, called the remainder. 

 Here is another way to express the relationship between the components: 
 

Division Hardware: 

 The Divisor register, ALU, and Remainder register are all 64 bits wide, with only the 

Quotient register being 32 bits. 

 The 32-bit divisor starts in the left half of the Divisor register and is shifted right 1 bit 

each iteration. 

 The remainder is initialized with the dividend. 

 Control decides when to shift the Divisor and Quotient registers and when to write the 

new value into the Remainder register. 

Dividend=Quotient x Divisor + Remainder 
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Divide algorithm: 
 

Step: 1 

 It must first subtract the divisor register from the Remainder register and place the 

result in the Remainder register. 

Step: 2 

 Next we performed the comparison in the set on less than instruction. 

 If the result is positive, the divisor was smaller or equal to the dividend, so shift the 

Quotient register to the left, setting the new rightmost bit to 1. 

 If the result is negative, the next step Restore the original value by adding the Divisor 

register to the Remainder register and placing the sum in the Remainder register. 

 Also shift the Quotient register to the left, setting the new least significant bit to 0 

Step: 3 

 The divisor is shifted right by 1 bit and then we iterate again. 
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 The remainder and quotient will be found in their registers after the iterations are 

complete. 
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Using a 4-bit version of the algorithm to save pages, let’s try dividing 7ten by 2ten, or 0000 

0111two by 0010two. 
 

 
An improved version of the division hardware: 

 

 The Divisor register, ALU, and Quotient register are all 32 bits wide, with only the 

Remainder register left at 64 bits. 

 Compared to above division hardware, the ALU and Divisor registers are halved and 

the remainder is shifted left. 

 This version also combines the Quotient register with the right half of the Remainder 

register. 
 

 

Signed Division 
 

 The simplest solution is to remember the signs of the divisor and dividend and then 

negate the quotient if the signs disagree. 

 The one complication of signed division is that we must also set the sign of the 

remainder. Remember that the following equation must always hold: 
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Rule: 

 The dividend and remainder must have the same signs, no matter what the 

signs of the divisor and quotient. 

 

 

Faster Division 

 There are techniques to produce more than one bit of the quotient per step. 

 The SRT division technique tries to predict several quotient bits per step, 

using a table lookup based on the upper bits of the dividend and remainder. 

 These algorithms use 6 bits from the remainder and 4 bits from the divisor to 

index a table that determines the guess for each step. 
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Restoring Division Algorithm 

 Step-1: First the registers are initialized with corresponding values (Q = Dividend, M = 

Divisor, A = 0, n = number of bits in dividend) 

 Step-2: Then the content of register A and Q is shifted right as if they are a single unit 

 Step-3: Then content of register M is subtracted from A and result is stored in A 

 Step-4: Then the most significant bit of the A is checked if it is 0 the least significant  

bit of Q is set to 1 otherwise if it is 1 the least significant bit of Q is set to 0 and value of 

register A is restored i.e the value of A before the subtraction with M 

 Step-5: The value of counter n is decremented 

 Step-6: If the value of n becomes zero we get of the loop otherwise we repeat fro step 2 

 Step-7: Finally, the register Q contain the quotient and A contain remainder 
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Example: 8 divide by 3=2 (2/3) 

The quotient (0010)2 = 2 is in register Q, and the reminder (0010)2 = 2 is in register A. 
 

Non-Restoring Division Algorithm 

 Step-1: First the registers are initialized with corresponding values (Q = Dividend, M = 

Divisor, A = 0, n = number of bits in dividend) 

 Step-2: Check the sign bit of register A 

 Step-3: If it is 1 shift left content of AQ and perform A = A+M, otherwise shift left AQ 

and perform A = A-M (means add 2’s complement of M to A and store it to A) 

 Step-4: Again the sign bit of register A 

 Step-5: If sign bit is 1 Q[0] become 0 otherwise Q[0] become 1 (Q[0] means least 

significant bit of register Q) 

 Step-6: Decrements value of N by 1 

 Step-7: If N is not equal to zero go to Step 2 otherwise go to next step 

 Step-8: If sign bit of A is 1 then perform A = A+M 

 Step-9: Register Q contain quotient and A contain remainder 
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FLOATING POINT 

Normalized number: 

 A number in floating-point notation that has no leading 0s is known as normalized 

number. i.e., a number start with a single nonzero digit.

 For example, 1.0ten×10-9 is in normalized scientific notation, but 0.1ten×10-8 and 10.0ten

×10-10 are not. 

Binary numbers in scientific notation: 

 To keep a binary number in normalized form, we need a base that we can increase or 

decrease by exactly the number of bits the number must be shifted to have one nonzero 

digit to the left of the decimal point. 1.0two ×2-1


Floating-Point Representation 

Floating point: 

 Computer arithmetic that represents numbers in which the binary point is not fixed.

Fraction: 

 The value, generally between 0 and 1, placed in the fraction field. The fraction is also 

called the mantissa.

Exponent: 

 In the numerical representation system of floating-point arithmetic, the value that is 

placed in the exponent field.

Single precision: 

 A floating-point value represented in a single 32-bit word. Floating-point numbers are 

usually a multiple of the size of a word.

 Where s is the sign of the floating-point number (1 meaning negative), exponent is the 

value of the 8-bit exponent field (including the sign of the exponent), and fraction is the 

23-bit number.

 F involves the value in the fraction field and E involves the value in the exponent field.

Format: 

Overflow: 

 A situation in which a positive exponent becomes too large to fit in the exponent field 

is known as overflow.

Underflow: 

 A situation in which a negative exponent becomes too large to fit in the exponent field 

is known as underflow.

Double precision: 

 One way to reduce chances of underflow or overflow is called double, and operations 

on doubles are called double precision floating-point arithmetic.

 It has a larger exponent. A floating-point value represented in two 32-bit words.
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 Where s is still the sign of the number, exponent is the value of the 11-bit exponent 

field, and fraction is the 52-bit number in the fraction field.

Format: 
 

IEEE 754 Format: 

 MIPS double precision allows numbers almost as small as 2.0ten × 10+308 and almost  

as large as 2.0ten × 10-308.

 Although double precision does increase the exponent range.

 Its primary advantage is its greater precision because of the much larger fraction.

 IEEE 754 makes the leading 1-bit of normalized binary numbers implicit.

 Hence, the number is actually 24 bits long in single precision (implied 1 and a 23-bit 

fraction), and 53 bits long in double precision (1+52).
 

 

 

 The desirable notation must therefore represent the most negative exponent as 00 … 

00two and the most positive as 11 … 11two.

 This convention is called biased notation, with the bias being the number subtracted 

from the normal, unsigned representation to determine the real value.

 IEEE 754 uses a bias of 127 for single precision, so an exponent of -1 is represented by 

the bit pattern of the value -1+127ten, or 126ten=0111 1110two, and +1 is represented by 

1+127, or 128ten = 1000 0000two.

 The exponent bias for double precision is 1023. Biased exponent means that the value 

represented by a floating-point number is really
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Example: 1 
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Example: 2 

FLOATING-POINT ADDITION 

 Assume that we can store only four decimal digits of the significand and two decimal 

digits of the exponent.

Example: 1 

Perform floating point addition for the following numbers. 

9.999ten x 101 +1.610ten x 10-1
 

Step 1: 

 Compare the exponent of both the operands.

 If it equal add the two operand (significand) .If it is not equal then increase the 

smaller exponent.

 i.e., shift the smaller number to the right until its exponent would match the larger 

exponent. As per our example

1.610ten x 10-1= 0.1610ten x 100 = 0.01610 ten x 101
 

 But we can represent only four decimal digits so, after shifting, the number is really

0.016 ten x 101
 

Step 2: 

Now add the Significand 

9.999   x 101
 

0.016   x 101
 

 

10.015   x 101
 

Step 3: 

 Normalize the sum, either shifting right and incrementing the exponent or shifting left 

and decrementing the exponent.

 This sum is not in normalized scientific notation, so we need to adjust it: 

10.015 x 101 = 1.0015 X 102 = 1.0015 X 102

 Whenever the exponent is increased or decreased, we must check for overflow or 

underflow. i.e., we must make sure that the exponent still fits in its field.

Step 4: 

 Round the significand to the appropriate number of bits.

 If the sum may no longer be normalized and we would need to perform step 3 again.

1.002ten x 102
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Example: 2 

Perform floating point addition for the following numbers. 

0.5ten and -0.4375ten 

Solution: 

Assuming that we keep 4 bits of precision. 0.5ten 

Operand 1: Convert the operands to binary 

0.5 x 2 =1.0 

Scientific Notation 

0.1 x 20
 

Normalizing the above value 

1.0 x 2-1
 

Operand 2: Convert the operands to binary -0.4375ten 

0.4375 x 2 = 0.8750 

0.8750 x 2 = 1.7500 

0.7500 x 2 = 1.5000 

1.5000 x 2 = 1.0000 

Scientific Notation 

0.0111 x 20
 

Normalizing the above value 

1.110 x 2-2
 

Step 1: 

The significand of the number with the lesser exponent (-1.110two x 2-2) is shifted right until 

its exponent matches the larger number: 

-1.110two x 2-2 = - 0.111two x 2-1
 

Step 2: 

Add the significands 

1.000 x 2-1
 

- 0.111 x 2-1 [Subtraction] 
 

0.001 x 2-1
 

Step 3: Normalize the sum and checking for overflow or underflow 

0.001 x 2-1 = 1.0 x 2-4
 

 

Step 4: Round the sum 

 
Then convert the sum to decimal 

1.000 x 2-4 = 0.0001two 

1 / 24 = 1/16ten= 0.0625ten 

 
1.000 x 2-4
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Flowchart: 
 

 First, the exponent of one operand is subtracted from the other using the small ALU to 

determine which is larger and by how much.

 This difference controls the three multiplexors; from left to right, they select the larger 

exponent, the significand of the smaller number, and the significand of the larger 

number.

 The smaller significand is shifted right, and then the significands are added together 

using the big ALU.

 The normalization step then shifts the sum left or right and increments or decrements 

the exponent.

 Rounding then creates the final result, which may require normalizing again to produce 

the actual final result.

 

 



CS8491: COMPUTER ARCHITECTURE   Department of CSE  

29 
2020-2021  Jeppiaar Institute of Technology 

 

Block Diagram: 

 

FLOATING-POINT MULTIPLICATION 

Example: 1 

Multiplying decimal numbers in scientific notation: 

1.110ten x 1010 x 9.200ten x 10-5
 

Assume that we can store only four digits of the significand and two digits of the exponent. 

Step 1: 

 We calculate the exponent of the product by simply adding the exponents of the 

operands together:

New exponent = 10 + (-5) = 5 

 Let’s do this with the biased exponents as well to make sure we obtain the same 

result:

10 + 127 = 137, and -5 + 127 = 122, so New exponent = 137 +122=259 

 This result is too large for the 8-bit exponent field.

 The problem is with the bias because we are adding the biases as well as the 

exponents.
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New exponent= (10+127)+(-5+127)=(5+2X127)=259

 To get the correct biased sum when we add biased numbers, we must subtract the bias 

from the sum.

 New exponent=137+122-127=259-127=132= (5+127) and 5 is indeed the exponent 

we calculated initially.

Step 2: 

Next comes the multiplication of the significands: 

1.110ten 

X 9.200ten 

 

0000 

0000 

2220 

9990 
 

The product is 10212000ten 

 Assuming that we can keep only three digits to the right of the decimal point, the 

product is 10.212ten x 105

Step 3: 

This product is unnormalized, so we need to normalize it: 

10.212ten x 105 = 1.0212ten x 106
 

 After the multiplication, the product can be shifted right one digit and adding 1 to the

exponent. 

 At this point, we can check for overflow and underflow. Underflow may occur if both 

operands are small, that is, if both have large negative exponents.

Step 4: 

Round of the Product 

1.021ten x 106
 

Step 5: 

 The sign of the product depends on the signs of the original operands.

 If they are both the same, the sign is positive; otherwise, it’s negative. Hence, the 

product is

+1.021ten x 106
 

Example: 2 

Multiple the numbers 0.5ten and -0.4375ten, using the steps in the above algorithm 

 Binary equivalent of 0.5ten = 1.000 x 2-1 and -0.4375ten = -1.110 x 2-2


Step 1 : 

Adding the Exponents without bias 

-1 + (-2) = -3 

Or using the biased representation 

Step 2 : Multiplying the significands 
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The Product is 1.110000two x 2-3,but we use 4 bits, so it is 1.110 two x 2-3


Step 3: 

Normalize the product, as per our example it is already normalized one 

1.110 x 2-3
 

Step 4: 

Rounding the product no change 

1.110 x 2-3 

Step 5: 

Since the signs of the original operands differ, make the sign of the product negative. 

Hence, the product is 

-1.110 x 2-3 

Converting to decimal to check our results: 

-1.110 x 2-3 = - 0.00111 = 1 /8 + 1 / 16 + 1 / 32 = - 0.21875 

Flow Chart: 
 

Guard Bit: 
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 Extra bits kept on the right during intermediate calculations of floating point numbers 

is called guard bit and it used to improve rounding accuracy.

Round: 

 Method to make the intermediate floating-point result fit the floating-point format.

 The goal is typically to find the nearest number that can be represented in the format.
 

Sticky Bit: 

 A bit used in rounding in addition to guard and round that is set whenever there are 

nonzero bits to the right of the round bit.

Subword Parallelism: 

 By partitioning the 128-bit adder, a processor could use parallelism to perform 

simultaneous operations on short vectors of sixteen 8-bitoperands, eight 16-bit 

operands, four 32-bit operands, or two 64-bit operands.

 The cost of such partitioned adders was small.

 Given that the parallelism occurs within a wide word, the extensions are classified as 

subword parallelism.

 It is also classified under the more general name of data level parallelism.

 They have been also called vector or SIMD, for single instruction, multiple data.
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