]IT JEPPIAAR INSTITUTE OF TECHNOLOGY? ™
A/ “Self-Belief| Self Discipline | Self Respect™ S —

DEPARTMENT
OF
ELECTRICAL AND ELECTRONICS ENGINEERING

LECTURE NOTES

EE8451- ELECTROMAGENTIC FIELDS
(2017 Regulation)
Year/Semester: 11/1V EEE

2020-2021

Prepared by
Dr. Prajith Prabhakar
Assistant Professor / EEE




If one side of the interface, as shown in fig 5.4, is a perfect electric conductor, say region

2, a surface current 75 can exist even though s 76f5a®
Thus egn 5.27(a) and (c) reduces to

=7, (5.28(a))
=0 (5.28(2)]
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Wave equation and their solution:

From equation 5.25 we can write the Maxwell's equations in the differential form as

uxH =7+ 22
o
ey

VxE=-"2
3t

v D=p

V-E=0
Let us consider a source free uniform medium having dielectric constants,
magnetic permeability #and conductivity T The above set of equations can be

written as

—

=_ =, OF
VxXH=aE+e— (5.29(a))
Fau
VXE=—u— (5.25 ()]
v E=0 5.29(c))
VH =0 (5.29(d))

Using the vector identity ,
VXV A=V (7 4] -7'4
We can write from5.29(b)

vxvx§=v-(v-§)—v3§
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Substituting V% H from 5.29(a)

- = af - aE
v (\?- E)-V'E=-u—|cE+e—
dt o
But in source free mediun{” £ =0 (egn
5.29(c))
— =
ViE = ,.m:rE + ﬂfg
ot ot (5.30)

In the same manner for equation eqn 5.29(a)

v><v><§=v-(v-§)—v3§

- J(?XE) + E%(TX E)
=T —{{_{E +Ei —{{_{E
df ot df

Since ¥ & = Ufrom eqn 5.29(d), we can write

— aH a*H
VIH =ua| —|+

These two equations

(5.31)
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are known as wave equations.

It may be noted that the field components are functions of both space and time. For

example, if we consider a Cartesian co ordinate system, BandH essentially represents
E[x,y,z,.ﬁ)
and H{xy.z.1) . For simplicity, we consider propagation in free spa¢é =< fe ™ M
£ = £
, and ® . The wave eqn in equations 5.30 and 5.31 reducesto
r —_—
- E
VIE = e, - (5.32(a)]
L
— a* H
ViIH = g, | —— 532(b
HoEh k az ] ( [ ))

Further simplifications can be made if we consider in Cartesian co ordinate system a

BandH

speC|aI case where are considered to be independent in two dimensions, say

BandH are assumed to be independent of y and z. Such waves are called plane waves.

From egn (5.32 (a)) we can

write
PE _ . 8F
A oy 2
The vector wave equation is equivalent to the three scalar
equations
f -+
I E *E,
—5= At 52 (5.33(a))
L F
3 E, (8°E, ]
= k| (533())
L E
1 [ o2 )
E & E
axﬂ = Eﬂl'u;:l 852 (533[Cj:‘

Since we have V' =10
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O R/ L (5.34)
dx  dy dz

As we have assumed that the field components are independent of y and z eqn
(5.34)
reduces to

35, _,

ar (5.35)

i.e. there is no variation of Ex in the xdirection.

2
85, _, PE

Further, from 5.33(a), we find that dx implies a’ which requires any three of
the conditions to be satisfied: (i) Ex=0, (ii)Ex = constant, (iii)Ex increasing uniformly
with time.

A field component satisfying either of the last two conditions (i.e (ii) and (iii))is not a
part of a plane wave motion and hence Ex is taken to be equal to zero. Therefore, a
uniform plane wave propagating in x direction does not have a field component (E or H)
acting along x.

Without loss of generality let us now consider a plane wave having Ey component only
(Identical results can be obtained for Ez component) .

The equation involving such wave propagation is given by
PR, 3 E,
%[ ] (53
X

The above equation has a solution of the form

£, = Alx—wt)+ H{x+vd) (5.37)

1
vu =

where VAo f

Thus equation (5.37) satisfies wave eqgn (5.36) can be verified by substitution.

Alx =) corresponds to the wave traveling in the + x direction while falx+wyt)
corresponds to a wave traveling in the -x direction. The general solution of the wave egn
thus consists of two waves, one traveling away from the source and other traveling back
towards the source. In the absence of any reflection, the second form of the eqn (5.37) is
zero and

the solution can be written as
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£, = Alx—wt) (5.38)

Such a wave motion is graphically shown in fig 5.5 at two instances of time t1 and t2.

f-:-lr_]' - 1=r.u*.-} fls gt

:M

Y

filx - voiz)

= i1

L‘_Vu 4, _51:'—"’| x

k |

Fig 5.5 : Traveling wave in the + x direction

Let us now consider the relationship between E and H components for the forward
traveling wave.

since & =% &, @A (X %) a0 there is no variation along y and z.

Since only z component of v“*"’\'_Ebexists, from (5.29(b))

3z 3,

-

i
dx el (5.39)

and from (5.29(a)) with @ =1 only Hz component of magnetic field being present

TR = _&; dH,
dx
AH, d0E,
- -5, —2
ax ok (5.40)
Substituting Ey from (5.38)
aH di ;
=g Evey (X~ wt)
ax
aH 1 .
—Z =g Flx—vt
ax 0 Jﬁufu 1 1: o :'
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The constant of integration means that a field independent of x may also exist. However,
this field will not be a part of the wave motion.

H= 2z,
Hence *o (5.41)

which relates the E and H components of the traveling wave.
E
2= 2 = |% 21207 or 37702
Hx rE-IZI

\ & is called the characteristic or intrinsic impedance of the free space

Harmonic fields
In the previous section we introduced the equations pertaining to wave propagation

and discussed how the wave equations are modified for time harmonic case. In this
section we discuss in detail a particular form of electromagnetic wave propagation called

‘plane waves'. The Helmhotz Equation:

In source free linear isotropic medium, Maxwell equations in phasor form are,

VHE=—jouH TxE=10
‘?Xﬁ=jm€§ TxH =0
 VXVRE =v(v><§) Vi E =T x H

or

’ 7 F = —jaul jocE)
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or. T E+ @ usE =10
or, V2 E+E*E = 0here k = anfie
An identical equation can be derived for H.
e VIH+EH=0

These equations

are called homogeneous vector Helmholtz's equation.

k= @HE s called the wave number or propagation constant of the medium.

Plane waves in Lossless medium:

In a lossless medium, sand u are real numbers, so k is real.

In Cartesian coordinates each of the equations 6.1(a) and 6.1(b) are equivalent to
three scalar Helmholtz's equations, one each in the components Ex, Ey and Ez or Hx
, Hy, Hz.

For example if we consider Ex component we can write

2 2 2
IE OB TR Lo
ax &' & i 6.2)

A uniform plane wave is a particular solution of Maxwell's equation assuming electric
field (and magnetic field) has same magnitude and phase in infinite planes
perpendicular to the direction of propagation. It may be noted that in the strict sense a
uniform plane wave doesn't exist in practice as creation of such waves are possible
with sources of infinite extent. However, at large distances from the source, the
wavefront or the surface of the constant phase becomes almost spherical and a small
portion of this large sphere can be considered to plane. The characteristics of plane
waves are simple and useful for studying many practical JITnarios.

Let us consider a plane wave which has only Ex component and propagating along z .
Since the plane wave will have no variation along the plane perpendicular to z i.e., Xy

85, _9E, _,

plane, * & . The Helmholtz's equation (6.2) reduces to,
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2
FZ° s (6.3)
The solution to this equation can be written as
E(z)=E @)+ &, (2)
= A e (6.4)

£y &5y are the amplitude constants (can be determined from boundary

= Jwt
conditions). In the time domain, £x Z-£) = Re(&, (2)e™)

£x(z,6) = B cos(a —kz )+ By cos(at + iz

B & E;

assuming are real constants.

Here, £ (&-£) = 87 cos(@ = 82) Lonresents the forward traveling wave. The plot of

£x (:8) for several values of t is shown in the Figure 6.1.

F,"’ —-— — —_—
T
f‘—
(¥if
0 \
Vi
== \:=U
&

Figure 6.1: Plane wave traveling in the + z direction

As can be seen from the figure, at successive times, the wave travels in the +z direction.

If we fix our attention on a particular point or phase on the wave (as shown by the dot)
i.e., @~ 4 = constant

Then we see that as t isincreased to # + £¢ 7 also should increase to z *+£2 so that
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G+ A8 — &z +A2) = constant = g — Sz

Or’ it = LAz
e _@
Or, & &

When Mt —0 ,

we write 424 df= phase “Welocity

y, =2
L 2T (6.6)
If the medium in which the wave is propagating is free space i.e.,
E= 6. HT K
va = @ 1 . C’

Then Dy gy i ~Ha

Where 'C' is the speed of light. That is plane EM wave travels in free space with the
speed of light.

The wavelength 4 is defined as the distance between two successive maxima (or minima
or any other reference points).

o (@i [@~k(z+A)] =27

Or’ .SC,& =27
12w
or, k

| &

I =
Substituting ¢
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_ZV: Ve
mf  f
or, ’af:v? ................................ (6.7)

Thus wavelength-hlso represents the distance covered in one oscillationof the wave.
o £ (z,t) = By cos(at +iz) 4
Similarly, represents a plane wave traveling in the -z

direction.

The associated magnetic field can be foundas follows:

From (6.4),

L]
e

o _ u
where g Y HE d is the intrinsic impedance of the

medium. When the wave travels in free space
7, = 1P = 1207 - 37702
i is the intrinsic impedance of the free space.

In the time domain,
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Which represents the magnetic field of the wave traveling in the +z

direction. For the negative traveling wave,
—_ Eﬂ*
H (z,6) = —a,——rcos [mﬁ + ﬁz)
A

For the plane waves described, both the E & H fields are perpendicular to the
direction of propagation, and these waves are called TEM (transverse
electromagnetic) waves.

The E & H field components of a TEM wave is shown in Fig 6.2.

H

T

Figure 6.2 : E & H fields of a particular plane wave at time t.

IT 104 Dept of EEE




TEM Waves:

So far we have considered a plane electromagnetic wave propagating in the z-direction.
Let us now consider the propagation of a uniform plane wave in any arbitrary direction
that doesn't necessarily coincides with an axis.

For a uniform plane wave propagating in z-direction

— _ —j.‘x -
E@) =™ Biis a0 constant  VECHOT.....ooooooooi

(6.11) The more general form of the above equation is

E (x,y,2)= Eog k=i

(6.12) This equation satisfies Helmholtz's equation
W' E+k'E = 0provided,
R A A AT

. k=a ik +ta k ta k =ka
We define wave number vector LRI A A L

(6.14) And radius vector from the origin

Fal o s

;=axx+a_vy+czxz (6.15)

Therefore we can write

E(;) = B~ = Fpe r (6.16)

o

Here @= & =constant is a plane of constant phase and uniform amplitude just in the case of
Eiz) = Eue™®

z =constant denotes a plane of constant phase and uniform
amplitude. If the region under consideration is charge free,
VE=0

?.(Eue_ﬁ_;) -0

7. [ﬁé) = AVF+ VA

Using the vector identity and noting thé& IS constant we
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can write,
EU.T[E"’M" ] =1
oF En ic;; + iaﬁ; + d nx E—_ﬂ:m%whx} =1
dx he dz
ar,gu.[—jk.::; 2 ke, ;] =0
Eoay =0 o (6.17)
ie., Eo is transverse to the direction of the
propagation.

The corresponding magnetic field can be computed as
follows:

E(;) ) _ﬁ?xﬁ(;) = ﬁ?x (Eng-ﬁ.?)

Using the  vector
identity,

‘?X(Wﬁ) = T X A+T wrx A

Since £t is constant we can
write,

Fi =L w7 F,

Jou
=—-— ! —jkalxgne_ﬁﬂ" ';:I
Jau
- £ GxE(F)
@

EG}=%£xE§)

Where 7 is the intrinsic impedance of the medium. We observe that Hir) s perpendicular

—

. B(7 57 @G
to both and (r) Thus the electromagnetic wave represented by (r)and Airlis a
TEM wave.
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Plane waves in a lossy medium:

In a lossy medium, the EM wave looses power as it propagates. Such a medium
IS conducting with conductivity & and we canwrite:

—

VxH=J+jwcE=(c+ joc)E
=ja:r[€+_£ E
Jja@

= J@E B (6.19)

E¢=E—j£=.§'—j£‘_
Where @ is called the complex permittivity.

We have already discussed how an external electric field can polarize a dielectric and
give rise to bound charges. When the external electric field is time varying, the
polarization vector will vary with the same frequency as that of the applied field. As the
frequency of the applied filed increases, the inertia of the charge particles tend to prevent
the particle displacement keeping pace with the applied field changes. This results in
frictional damping mechanism causing power loss.

In addition, if the material has an appreciable amount of free charges, there will be
ohmic losses. It is customary to include the effect of damping and ohmic losses in the

imaginary part of % . An equivalent &dfiivity represents all losses.

EII
The ratio &' is called loss tangent as this quantity is a measure of the power loss.

}d =j<21€§

I
I
I
I
I
I
I
I
I
I

Y

}(:=J§

Fig 6.3 : Calculation of Loss Tangent

With reference to the Fig 6.3,
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tan & = = —=—
|jd-| @ae £

where < is the conduction current density anf= s displacement current density. The
loss tangent gives a measure of how much lossy is the medium under consideration. For

(o< @), tan 5 .

a good dielectric medium is very small and the medium is agood

conductor if (0 @) . A material may be a good conductor at low frequencies but

behave as lossy dielectric at higher frequencies.

For a source free lossy medium we can write
TX§=[J+J'¢H€)_E VE=0
VxE=—jould vE=o}

UXVXE =V(V.E|-V'E =~ jalV xH = - jau(c+ joe) E
ar,TjE— yj_EP =0

Where 7"~ S (0 e

Proceeding in the same manner we can write,

ViIH -y H =0

y=g+if= \['Jm,u J+J€Eﬂ£‘ jCﬂF[l"‘—

J@E

is called the propagation constant.

The real and imaginary parts® and £of the propagation constant 7 can be computed
as follows:

. =[cr+z‘,5j2 = jeu(a+ jos)
ar, o’ — & = —a'ue

Coalt - [ﬂ'ﬂr“{'“:r =—a s
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or,dat + dat e ue = @it

or,dat +dat e e + @t et = o et + 2t

a_'}!
vat tatuel = ot ifet |1+
or,[ & m,&a) a'ilfe mE,s'g]
4
or,a=a HE 1+[£] -1
2 Qe
................... (6.23a)
4
ﬁ:m E 1+ i +1
2 @e
Similarly...... L b (6.23b)

Let us now consider a plane wave that has only x -component of electric field and
propagate along z .

E:ﬂ:Z) = (EDJ'E"“ +Eu_5'_ﬁ)ﬂx (6.24)
Considering only the forward traveling wave
E‘[z,.ﬁ) =Fe [E{e_ﬁeﬁ”)%
- Eecos(@i-fz)ay (6.25)
#--_L vxE
Similarly, from JEH , we can find
s EI:I —E o
#lzt)= e os(at - frla,
B e (6.26)
7= = e
Where arjaE
. = Eu —aT "
e cos[mﬁ—ﬁz—ﬂnja},
£ (6.27)
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From (6.25) and (6.26) we find that as the wave propagates along z, it decreases in B
amplitude by a factor ¢™ Therefore  is known as attenuation constant. Further £ and
H

are out of phase by an angle &

[an
) ) — ] _ . .
For low loss dielectric, @& e f seE

Using the above condition approximate expression for & &nd can be obtained as
follows:

qliz
y=a+if= jofue [l—f—,
c

& phase velocity

g
=jafue |1+ —| = jaue [—
¥ oo gasfua ]"‘r H JoE
1+
T
=2 (6.31)

H
[REN
D
)

(48




We have used therelation

RV

From (6.31) we canwrite

a+if=JTfuc+ o

............... (6.32)
T
. S
d;’m&‘[ﬁ_—
JaE
J&ﬁﬂ _ JJau
£ a a
=1+ /) AfH
a
-+ 0)=
..................... (6.33)
And phase velocity
@ 2@
V=== |—
B NHT (6.34)

Poynting Vector and Power Flow in Electromagnetic Fields:
Electromagnetic waves can transport energy from one point to another point. The
electric and magnetic field intensities asscociated with a travelling electromagnetic
wave can be related to the rate of such energy transfer.

Let us consider Maxwell's Curl Equations:

vxF=-2
Jié
TR = j+E
di

Using vector identity
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?.(EXE) —HVSE-BVxH

the above curl equations we can write

~ — =3B =[- aD
V(ExH|=-H—-E|J ]
ik &
or, 7(BxH)--F L -E7-EL
: et (6.35)
In simple medium wherg # and < are constant, we can
write
7B _3(1 .
dg a2
53D _3(1 p
gt di| 2 and E}- = -:‘.TE2
- — ail 1
V(ExH)=-—| e B+ _uH*|-c&
gt 2 2
Applying Divergence theorem we can write,
f[ﬁxﬁ)d5= —BEJ[%E oo +%,{1Hg]dV—JJE2dV
A (6.36)

JT
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EJ[le Bl Hﬂ]dv
The term dyle 2 represents the rate of change of energy stored in

p[mﬂfv
the electric and magnetic fields and the term represents the power dissipation
within the volume. Hence right hand side of the equation (6.36) represents the total

decrease in power within the volume under consideration.

¢(ExH)a5 - §Pas
The left hand side of equation (6.36) can be written as where

P=ExH (W/mtz) is called the Poynting vector and it represents the power density
vector associated with the electromagnetic field. The integration of the Poynting vector
over any closed surface gives the net power flowing out of the surface. Equation (6.36)
is referred to as Poynting theorem and it states that the net power flowing out of a given
volume is equal to the time rate of decrease in the energy stored within the volume
minus the conduction

losses.

Poynting vector for the time harmonic case:

For time harmonic case, the time variation is of the form é“m, and we have seen that
instantaneous value of a quantity is the real part of the product of a phasor quantity and

Jut . . .
£°" when ©2F &% js ysed as reference. For example, if we consider the phasor

E[z) = cz: E,(z)= :;t: Egmirs

then we can write the instanteneous field as
E[z,.ﬁ) =Ee [E[z) E""”’] = By cos(at - Sz) .:1:

when EQ is real.
Let us consider two instanteneous quantities A and B such that

A=Fe Iiﬂej‘"r) = |ﬂ|cos (@t + )
B =Re(Be™ ) =|B|cos(ax + )
where A and B are the phasor quantities.

A=]4e™
el

B =|Ble”
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Therefore,
AB = |ﬂ|cos[mﬁ + &)|B|cos[mﬁ + ﬁ)
1
= —[A||B||cos(@ - S) +cos(2a+ax+ 8
2| | l[ [ ) [ )] .............................. (6.39)
-7
Since A and B are periodic with period & | the time average value of the productform
AB, denoted by A5 can be written as
— 1f
Ab = —J‘Aﬂdﬁ
il

A5 - %|ﬂ||3|l:os[.::}:— £)

Further, considering the phasor quantities A and B, we find that
45" = Al 36" - [4lp)e"

Re(AB") = |4||B|cos (@ £)

and , Where * denotes complex conjugate.

— 1 .
..ﬂB=ERe(ﬂB)

The poynting vector P= Exgcan be expressed as

P-a,(B,H,-EH,)va (BH, - EH,) a,(EH, - BH,)

If we consider a plane electromagnetic wave propagating in +z direction and has only £,
component, from (6.42) we can write:

— s

Fr=1£K, [z,.ﬁ)HJ, [z,.ﬁ:lag

Using (6.41)
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Ll

B - B(Day g HE@=H,@) a, |

where for the plane wave under

consideration. For a general case, we canwrite

Po =2 Re[BxH |
S (6.44)
We can define a complex Poynting vector

5-1EF
2

| | | Py -Rel§)
and time average of the instantaneous Poynting vector isgiven by

Electromagnetic Spectrum:
The polarisation of a plane wave can be defined as the orientation of the electric field
vector as a function of time at a fixed point in space. For an electromagnetic wave, the
specification of the orientation of the electric field is sufficent as the magnetic field
components are related to electric field vector by the Maxwell's equations.

Let us consider a plane wave travelling in the +z direction. The wave has both Ex and Ey
components.

— o, Ll .
_ - T
B= [a:x E. +a, Eﬂy]é‘

The corresponding magnetic fields are given by,

— .

H=—ax><§
7

1 n n n —jex
= Eﬂxx a B+ a, Eﬂy !

;. | e
=—|-E,a,t E,a,|e

Depending upon the values of Eox and Eoy we can have several possibilities:
1. If Eoy = 0, then the wave is linearly polarised in thex-direction.
2. If Eoy = 0, then the wave is linearly polarised in they-direction.

3. If Eox and Eoy are both real (or complex with equal phase), once again we get a

JT 115 Dept of EEE




linearly polarised wave with the axis of polarisation inclined at an angle o
with respect to the x-axis. This is shown in fig 6.4.

emerging
Fig 6.4:Linear Polarisation

4. If Eox and Eoy are complex with different phase angles, £ will not point to a single
spatial direction. This is explained as follows:

Let Zor = [Eale”
Eﬂy - |Eﬂ',1' |'E?j.lal
Then,
E (z,£)=FRe [|Em|eﬁe_‘meﬁ”’] = |Em ||:os (@t — Bz +a)
and E,(z,2)=Re [Er:',v Eﬁé_iﬁx@jd] = | By |cos [mﬁ - gz +"E:':] .................................... (6.46)

T
To keep the things simple, let us consider a =0 and 2
of the electric field on the z =0 plain.

. Further, let us study the nature

From equation (6.46) we find that,

E, (0,8) =|E,|cos at
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FLECTROMAGNETE-HELDBS
i3
B, (o.t) =|E,|cos aﬂﬁ+§ = |Epy (—sin @)
E ‘(& ’
[ X(O’ﬁ) +] 2 [G’ﬁj =rcos® @f +sin” af =1
| 2 (6.47)
and the electric field vector at z = 0 can be written as
E[ﬂ,.ﬁ)=|EN|cos[mﬁjc£{— E |sin(@t)a, (6.48)

_|E | >|E Z . . A ..
Assummg| ‘,,;| 2| the plot o‘? (2.2) for various values of t is hown in figure
Fig
6.5.
{=372w
Eox
o
1= o =0
Eoy
t=n12w

Figure 6.5:Plot of E(0,t)

From equation (6.47) and figure (6.5) we observe that the tip of the arrow
representing electric field vector traces gn ellipse and the field is said to be
elliptically polarised.

v

A

Figure 6.6: Polarisation ellipse
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The polarisation ellipse shown in figure 6.6 is defined by its axial ratio(M/N, the ratio of
semimajor to semiminor axis), tilt angle *orientation with respect to xaxis) and sense of
rotation(i.e., CW or CCW).

Linear polarisation can be treated as a special case of elliptical polarisation, for which the
axial ratio is infinite.

In our example, if | ‘”‘| @1, from equation (6.47), the tip of the arrow representing
electric field vector traces out a circle. Such a case is referred to as Circular Polarisation.

For circular polarisation the axial ratio is unity.

Figure 6.7:Circular Polarisation (RHCP)

Further, the circular polarisation is aside to be right handed circular polarisation (RHCP) if
the electric field vector rotates in the direction of the fingers of the right hand when the
thumb

points in the direction of propagation-(same and CCW). If the electric field vector
rotates in the opposite direction, the polarisation is asid to be left hand circular
polarisation (LHCP) (same as CW).

In AM radio broadcast, the radiated electromagnetic wave is linearly polarised with the

£ field vertical to the ground( vertical polarisation) where as TV signals are
horizontally polarised waves. FM broadcast is usually carried out using circularly
polarised waves.

In radio communication, different information signals can be transmitted at the same
frequency at orthogonal polarisation ( one signal as vertically polarised other
horizontally polarised or one as RHCP while the other as LHCP) to increase capacity.
Otherwise, same signal can be transmitted at orthogonal polarisation to obtain diversity
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gain to improve reliability of transmission.
Behaviour of Plane waves at the inteface of two media:

We have considéréd $he propagation of uniform plane waves in an unbounded
homogeneous medium. In practice, the wave will propagate in bounded regions
where several values of will be present. When plane wave travelling in one
medium meets a different medium, it is partly reflected and partly transmitted. In
this section, we consider wave reflection and transmission at planar boundary
between two media.

Medium 1 Medium 2
&, A1, &, o, @

I E, 1 E;
dlﬂ' H, 6&1

r

E;
$—> ~
” 1 aﬂ!

(s

Fig 6.8 : Normal Incidence at a plane boundary

Casel: Let z = 0 plane represent the interface between two media. Medium 1

is characterised by (8. 44.0,) and medium 2 is characterized by CHR) :

Let the subscripts 'i' denotes incident, 'r' denotes reflected and 't' denotes transmitted
field components respectively.

The incident wave is assumed to be a plane wave polarized along x and travelling in
medium

o

1 along “ direction. From equation (6.24) we can write

€ T 4X e, (6.49.9)
H; (z)= —.:;;;XEE (z)= ie""x ;y
& T s (6.49.b)
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: ) N
where 1 =\[jm,.:11[a'1 +jes) and ArIDE
Because of the presence of the second medium at z =0, the incident wave will
undergo partial reflection and partiad transmission.

. fur - .
The reflected wave will travel along®  in medium

1. The reflected field components are:

By o ———— (6.50)
Er_l[_;z]XE e a, =-—"a,
m no (6.50h)

The transmitted wave will travel in medium 2 along %= for which the field components are

o

By=F "y
0

¥ el B e (6.51a)
H= E—m K E;I;
e e, (6.51b)
5, = J@y
_ . . 2 -
where Tz_‘.’v'rmﬁ*rz[‘:rz"'imfz) and O, + ey
In medium 1,

§1=Ei+_ﬁ|.-rand E1=Ei+gr

and in medium 2,
Ha =E:rand Ha=H,
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Applying boundary conditions at the interface z = 0, i.e., continuity of tangential
field components and noting that incident, reflected and transmitted field

components are tangential at the boundary, we can write

From equation 6.49 to 6.51 we get,
B T B e (6.52a)
Zo B _ B
L T T s (6.52b)
Eliminating
Eto,
2o (8, 48,)
o 2
g(lot)og [1at
or, o T
B, =T,
or,
............... (6.53)
. . .. T=??2_??1
is called the reflection coefficient. Ty + 70

From equation (6.52), we can

write
2B, =E, |1+
T
E:r::l - 2??2 Ez’a =TE&J
or, oty
JT 121
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is called the transmission

coefficient. We observe that,

T = 20y My Tt ty =1+T
Tt Tty (6.55)

The following may be noted

(1) both ©and T are dimensionless and may be complex

iy O£l <1
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Let us now consider specific cases:

Case I: Normal incidence on a plane conducting boundary

The medium 1 is perfect dielectric (0,=0) and medium 2 is perfectly conducting

£ =':°)_

N £
=
#y =0

7 =em)(jee,)
= janjie, =08
From (6.53) and (6.54)
T = _1
and T =0

Hence the wave is not transmitted to medium 2, it gets reflected entirely from the
interface to the medium 1.

) (z) = B, o a:— E o c;; =-2jF, sin ﬁlzé;
&
" Bi(z.t) =Re[-2/E, sin ﬁzej‘"’].:z: = 2, sin Bz sin@ta,
Proceeding in the same manner for the magnetic field in region 1, we can show that,

El[z,ﬁj = a:, 28, cos Azcosan
)

The wave in medium 1 thus becomes a standing wave due to the super position of a
forward travelling wave and a backward travelling wave. For a given ' t', both £1and

H1yary
sinusoidally with distance measured from z = 0. This is shown in figure 6.9.
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1 LU TINUIVIANUINNLLTTOU T T Uy
wt = 3 g/2
wl = O wl = 7/2
{a) E; versus z o= o
peyrct
conductor
Wl = O
wl = a7
v wl = g/2
(b) Hy versus z R

Figure 6.9: Generation of standing wave
Zeroes of E1(z,t) and Maxima of H1(z,t).

Maxima of E1(z,t) and zeroes of H1(z,t).

"y

A
soccur at Gz =-am orz = —FEE

i

yvoccur at Sz = —(2n+1) > or 2 =—|:2?3 +1)%, a=012. .

Case2: Normal incidence on a plane dielectric

boundary

If the medium 2 is not a perfect conductor (i.e. i ) partial reflection will result. There
will be a reflected wave in the medium 1 and a transmitted wave in the medium 2.Because
of the reflected wave, standing wave is formed in medium 1.
From equation (6.49(a)) and equation (6.53) we can write
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oo -nz KT
Bi=B, (e +Te¥)ar (6.59)
Let us consider the JITnario when both the media are dissipation less i.e. perfect
dielectrics ( &1 =% @2 =0
W o=Janfing =08 = %
1
Yo = J@JHE = i 5 My = ik
E2 (6.60)

In this case both 71and 1 become real numbers.

—

E1= B, (o7 + T
- ain‘, ((1 +T) oIBE LT (é..r;ﬁux _ E—mx))

= axE, [Te% +T(2jsin §2))

From (6.61), we can see that, in medium 1 we have a traveling wave component
with amplitude TEijo and a standing wave component with amplitude 2JEjo.

The location of the maximum and the minimum of the electric and magnetic field
components in the medium 1from the interface can be found as follows.

The electric field in medium 1 can be written as
B = ﬁin‘,e'”'x (1 + I"é"ﬂﬁ'x)

1§72 7 Mie. >0

The maximum value of the electric field is

B =&, (1+7)

and this occurs when
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R beFi A
Emmr E_ 27 - Ejl
or A S NZ0,1,23 (6.64)
The minimum value of
5|
is
E| =E(1-T
&l -&0-n) (6.65)
And this occurs when
2687, = (20t )70
Zom _[2?2 +1)i
or 4 n = 0, 1, 2,
T p(6.66) For T “Mje. <0
) 1 . .
The maximum value of | 1|is 2, [1 r)WhICh occurs at the zmin locations and the

minimum

value of |§1| is £, (1+T)

and (6.66).

which occurs at zmax locations as given by the equations (6.64)

.

From our discussions so far we observe that | Imn can be written as

|2 _ 1+
o= -
|E|mm 1_|1—| (6.67)

The quantity S is called as the standing wave ratio.
A 0<|r| <1
S

by

the range of S is given %5 e

From (6.62), we can write the expression for the magnetic field in medium 1 as

Hi= &,v B g~IA (1 - rg”ﬁ’)

S (6.68)
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From (6.68) we find that 2 e
VICe versa.

In medium 2, the transmitted wave propagates in the + z direction.

will be maximum at locations where is minimum and

Oblique Incidence of EM wave at an interface

So far we have discuss the case of normal incidence where electromagnetic wave
traveling in a lossless medium impinges normally at the interface of a second medium.
In this section we shall consider the case of oblique incidence. As before, we consider
two cases

I. When the second medium is a perfect
conductor. ii. When the second medium is a perfect
dielectric.

A plane incidence is defined as the plane containing the vector indicating the direction
of propagation of the incident wave and normal to the interface. We study two specific

cases when the incident electric field £tis perpendicular to the plane of incidence

(perpendicular polarization) and #: parallel to the plane of incidence (parallel
polarization). For a general case, the incident wave may have arbitrary polarization but
the same can be expressed as a linear combination of these two individual cases.

Oblique Incidence at a plane conducting boundary i. Perpendicular Polarization
The situation is depicted in figure

6.10.
A X
(éf 4 Perfect Conductor
- / ——
a¥
e' N
0‘ N z
K;ai
o ‘<:7{' B s T
G|=0 CT) -
Figure 6.10: Perpendicular

Polarization

As the EM field inside the perfect conductor is zero, the interface reflects the incident
plane wave. @nd respeetively represent the unit vector in the direction of

propagation of the incident and reflected waves, 4 is the angle of incidence and & IS
the angle of reflection.
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We find
that

Gui = dzCOS &+ ax 510 &

G = ~@z COSE, Yazsin 8,

Since the incident wave is considered to be perpendicular to the plane of incidence,
which for the present case happens to be xz plane, the electric field has only y-

component.

—

Bi(x.z)= &;;Eiae_j’ﬂla"' T
=,k
The corresponding magnetic field is given by

J— 1 FS —
Hi(xz)=—|a, ®Ei(xz)
. ]

-1 [— Cos ﬂ&x +sin aéx] Ee
&
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Similarly, we can write the reflected waves as

—_

Er(xz)= ayEme_j’gla_" T

- —{ & ks — Zoosc,
=y, 2 J A rsindy ")

Since at the interface z=o0, the tangential electric field is zero.

2 é_vil.}gl_xsinlﬁ'i + Ewé‘_j-ﬁlxsinﬂr =0

o

Consider in equation (6.72) is satisfied if we have

B, --E

rad 2

and 6 =8,

E}l}_:

The condition *is Snell's law of reflection.

—

Er[x z) = _&_«,.E. E_J.J%[xsmaj_zcl:ls&]:]

and Er I:X,Z) =l axrxﬁrix,zj]

o)

“Ze [ 4 cos g - G sin 5!] E‘Jﬁ(mn%—zcasﬁ]
G
The total electric field is given by

EE'H [x,z) = E':- [x,z) + E;v [x,z:l

Similarly, total magnetic field is given by

H (x,z)= —EE—*’ [&x cos & cos( Bz cos -:5‘!-:I‘c,:'_"i'.’almn'ﬁE + &xj sin & sin ( Az cos &, jl‘cg'_"if’alejIllﬁri ]
#

From eqgns (6.76) and (6.77) we observe that

1. Along z direction i.e. normal to the boundary

y component of  and x componefﬁ of maintain standing wave patterns
. ' z = Hcosd

according to ' ﬁf and A ﬁmﬁwe@ . No average power

propagates along z# H
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as y component of and x component of  are out of phase.
2. Along x i.e. parallel to the interface

y component of E and z component of H are in phase (both time and space) and
propagate with phase velocity

_ i) _ i)
Ve e acind,
and A, = 2T _ A
© B sng (6.78)

The wave propagating along the x direction has its amplitude varying with z and hence

constitutes a non uniform plane wave. Further, only electric field¥lis perpendicular to
the direction of propagation (i.e. x), the magnetic field has component along the
direction of propagation. Such waves are called transverse electric or TEwaves.

ii. Parallel Polarization:

In this case also 2= and %= are given by equations (6.69). Here Z1and #+have only
y component.

4 ‘ Perfect Conductor
. e
0 S e
S
w® @xi
E R ——__ e
a;=0 g, =

Figure 6.11: Parallel Polarization
With reference to fig (6.11), the field components can be written

as: Incident field components:
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Ei I:x,zj = &, [EOS ,g!&x —sin ﬂ&x] E—J',%[xsm.ﬂi+g.;.:,sgij

Hi(x,z) = ay 2o g Alomareesd)
B, (6.79)
Reflected field components:

- - -~ —7 5[ xsind, —zcosd
Ey(xz)=E, |ax cosé‘,+axs1n5',]e Alrsindy ’)

Er [X, Z:] = _a,v & E—J',-Bl[xsin&.,_zcusﬂr:l

& Y A, (6.80)
Since the total tangential electric field component at the interface is zero.

.E'i[x,D:H El[x,ﬂjl =1

Ez’:: = _Eraand 'Elz =

Which leads to ¥ as before.

Substituting these quantities in (6.79) and adding the incident and reflected electric
and magnetic field components the total electric and magnetic fields can be written
as

E; (x.z)=-2E, i j Cos 8 sin | fzros g+ s sin & cos( Bz cos EJ!:]] g F AT

-

and  Hi (x,2) = ay 25, cos( fzrosd )E_J."lesm'gi

Once again, we find a standing wave pattern along z for the x and y components of £ and

. while a non uniform plane wave propagates along x with a phase velocity given
VE _ &
— Yol T o
sin & ¥ 8 o . . s e iy
* by where . Since, for this propagating wave, magnetic field is
in
transverse direction, such waves are called transverse magnetic or TM waves.

vpl:r =

Oblique incidence at a plane dielectric interface

We continue our discussion on the behavior of plane waves at an interface; this time we
consider a plane dielectric interface. As earlier, we consider the two specific cases,
namely parallel and perpendicular polarization.
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LT OTTVYOUTVIAANUINL T TO T T
A} &
Er Hr g
Er Ht
0,
B| 2
Z
Z2=0
Medium 1 Medium 2
§. 4,0, =0 Ep Hg, Oy = 1)
Fig 6.12: Oblique incidence at a plane dielectric

interface
For the case of a plane dielectric interface, an incident wave will be reflected partially
and transmitted partially.

In Fig(6.12), &% andé,
and transmission.

corresponds respectively to the angle of incidence, reflection

1. Parallel Polarization
As discussed previously, the incident and reflected field components can be written as

xsind+zcoss, |

Ei (x,zjl = A, [u:os 5'!&;; —san 5'!-&3] é'_"wl[
(1) - 5y B A 205)

O —— (6.82)
By (x.2)= &, |arcos 8, +assin Hr]e‘”gl[”mﬁr‘msﬁrll

—_ ~ B i -
Hy I:X,Z:I =—g,—Tg .,i','ﬂl[xmngr chs.ﬂr:]
G

In terms of the reflection coefficient I’
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xsing,—zc0s, |

E, (x,2)=TE, [éx cosd, +az sin Hr]e_"?.’gl[
Ty () =y LB ey -zcosy
1 S (6.84)

The transmitted filed can be written in terms of the transmission coefficient T

Er [X, Z:l =TE, [&x cosd, - Ggsin gt]g—jﬁ;[mnﬁ,ﬂcnsﬁ,)

i (12) -3 DB S )
My

We can now enforce the continuity of tangential field components at the boundary i.e. z=0

cos B SRR | g H?E_J.’Blmn'?’ =Tcos 5,2_"?.’33“1“&"
and le—j,ﬂlxsinﬁg _Le—jﬁlxsin&, _ Eg—j,&gxsmﬂ;
) " B (6.86)

If both Z+and > are to be continuous at z=0 for all x , then form the phase matching
we have

Gein g = Asind, = G50 8

.~We find that
8-8,
and Gand =408 (6.87)
Further, from equations (6.86) and (6.87) we have
cosd +lcosd =Tcosd,
ad L-L_F
T T T (6.88)
cos& (1+T)=Tcos 4,
and L(1-1y= L
) g
T="2(1-1)
gl
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H

cos&(1+) =2
G

(1-Tces g,

S (mycos8 +nycos )T =nycos8, —m cos§

=% cosd —mcosd

Hycosd tacosd

|
_ Znycos
HyCos 8, + iy cos (6.90)
From equation (6.90) we find that there exists specific angle 4= for which = 0 such

that

Hycosd, = oz

Ji-sin®g =

I

sin &, = ﬁsin g,
Further,

For non magnetic material
Using this condition

. £ .
1-sin® g =-1(1-35in* &
snC & EEI[ s11l a)

and sin® & = Lsin? g,

2 (6.93)
From equation (6.93), solving for #™ & we get

1

=
1+21

£

sin &, =

This angle of incidence for which I =0 is called Brewster angle. Since we are dealing

with parallel polarization we represent thisangle by G so that
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1+ a
£y
2. Perpendicular Polarization
For this case
B, () - 3, 5, Albena s8]
— E,r ~ -~ — [ xsing +z0085 )
Hi(x,z)="2|-arcos8 +assin 5!!].;?
e RO (6.94)

Er [x,z:] = ayrgbé‘iﬁlzl’t’»inﬂ«—zcns&,)

- J A xeing —zcosy)

Hy(xz)= = [&x cos &, +ax sin 5‘,] e
o

7 (x.2) = N TE, E-J‘ﬁ(xsmmzc oSt |

xsindy+ zoos ﬂ;j

Hi(xz)= &, [—&x cosd, +assin 5‘,] o5l
Pa b (6.96)

Using continuity of field components at z=0
p RSNG| o mT ARG o - ARG

and —lcos giE—J',lesin.g + E Cog g?g—,i"ﬁlxsinﬂr - E o Eré—j,ﬂgxsm&,
" “ T, (6.97)

As in the previous case

Geing = Aeind = G an 8

& =6
and sin &, = ﬁsiné‘i
......................... (6.98)
Using these conditions we can write
1+T=T
cosd  [cosd Tros8,
—_ + [
£ & B, (6.99)
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From equation (6.99) the reflection and transmission coefficients for the
perpendicular polarization can be computed as

r =?.13|:os-:9!- — oz

nycosd tamcosd
nycosd

nycosd +acosd (6.100)

and T =

We observe that ifl" = 0 for an angle of incidence =4

Hycosd, = cosf,

Ccost g = A os? a,
0!
_ M8
iy

cos 5'

C1-sin? g, =220 1-4in% )
L,

sAn g, = ﬁsin &,

Again

g A5
Ay €y

L sin sin 5'

[1 Lallo W .15?‘,,]=@—@sin2 8,

Ly €y gy M5
sin? 8, Mg M | 1- L5
or Hy€y L& Ly
sin? % - HhEy T HyE)
or ﬁ*rlﬁ*’zf'z L £y

or sinl .= T E:I ........................... (6.101)
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We observe if 1~ #27 #i¢_in this case of non magnetic material Brewster angle does
not exist as the denominator or equation (6.101) becomes zero. Thus for perpendicular
polarization in dielectric media, there is Brewster angle so thatlcan be made equal to
zero.

From our previous discussion we observe that for both
polarizations

san g, = %sin 8

If &4 = Ha T My
sAn &, = ||i sin &
£3
For 87 8- 678
g = i g =sin™ il
- 8=4 G . LA .
The incidence angle ™ “*for which 2 je. is called the critical angle of

incidence.

:Electromagnetic spectrum:

If the angle of incidence is larger thaftotal internal reflection occurs. For such case an

evanelJITnt wave exists along the interface in the x direction (w.r.t. fig (6.12)) that attenuates
exponentially in the normal i.e. z direction. Such waves are tightly bound to the interface
and are called surface waves and waves spreading in the field of electric and magnetic

together called electromagnetic spectrum.
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