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If one side of the interface, as shown in fig 5.4, is a perfect electric conductor, say region 

2, a surface current can exist even though is zero as . 

Thus eqn 5.27(a) and (c) reduces to 

 

 
 Wave equation and their solution: 

 

From equation 5.25 we can write the Maxwell's equations in the differential form as 

 

 

Let us consider a source free uniform medium having dielectric constant , 

magnetic permeability and conductivity . The above set of equations can be 

written as 

 
Using the vector identity , 

 

We can write from 5.29(b) 
 
 

 

 

or 
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Substituting from 5.29(a) 

 

 
But  in  source free medium (eqn 

5.29(c)) 

 
(5.30) 

 

In the same manner for equation eqn 5.29(a) 

 

 
Since from eqn 5.29(d), we can write 

 
 

 

(5.31) 
 

These two equations 
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are known as wave equations. 

 
It may be noted that the field components are functions of both space and time. For 

example,  if we consider  a Cartesian  co  ordinate system, essentially represents 

 

and . For simplicity, we consider propagation in free space , i.e. 

, and . The wave eqn in equations 5.30 and 5.31 reduces to 

 

 

 

Further simplifications can be made if we consider in Cartesian co ordinate system a 

special case where are considered to be independent in two dimensions, say 

are assumed to be independent of y and z. Such waves are called plane waves. 

 

From eqn (5.32 (a)) we can 

write 

 

 

The vector wave equation is equivalent to the three scalar 

equations 

 

 

 

 
Since we have , 
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As we have assumed that the field components are independent of y and z eqn 

(5.34) 
reduces to 

 

 

 
 

i.e. there is no variation of Ex in the x direction. 

(5.35) 

 

 

Further, from 5.33(a), we find that implies which requires any three of 

the conditions to be satisfied: (i) Ex=0, (ii)Ex = constant, (iii)Ex increasing uniformly 

with time. 

 
A field component satisfying either of the last two conditions (i.e (ii) and (iii))is not a 

part of a plane wave motion and hence Ex is taken to be equal to zero. Therefore, a 

uniform plane wave propagating in x direction does not have a field component (E or H) 
acting along x. 

 
Without loss of generality let us now consider a plane wave having Ey component only 

(Identical results can be obtained for Ez component) . 

The equation involving such wave propagation is given by 

 

 

The above equation has a solution of the form 

 

 

 

where 
 

Thus equation (5.37) satisfies wave eqn (5.36) can be verified by substitution. 

corresponds to the wave traveling in the + x direction while 
corresponds to a wave traveling in the -x direction. The general solution of the wave eqn 

thus consists of two waves, one traveling away from the source and other traveling back 

towards the source. In the absence of any reflection, the second form of the eqn (5.37) is 

zero and 
the solution can be written as 
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(5.38) 
 

Such a wave motion is graphically shown in fig 5.5 at two instances of time t1 and t2. 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.5 : Traveling wave in the + x direction 

 

Let us now consider the relationship between E and H components for the forward 

traveling wave. 

Since and there is no variation along y and z. 

 

 
Since   only   z component  of exists,   from  (5.29(b)) 

 

 
(5.39) 

 
and from (5.29(a)) with , only Hz component of magnetic field being present 

 

 

 

 
 

Substituting Ey from (5.38) 

 

(5.40) 
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The constant of integration means that a field independent of x may also exist. However, 
this field will not be a part of the wave motion. 

 

 

Hence (5.41) 

 

which relates the E and H components of the traveling wave. 

 

 

 

is called the characteristic or intrinsic impedance of the free space 

 

Harmonic fields 

In the previous section we introduced the equations pertaining to wave propagation 
and discussed how the wave equations are modified for time harmonic case. In this 

section we discuss in detail a particular form of electromagnetic wave propagation called 

'plane waves'. The Helmhotz Equation: 

In source free linear isotropic medium, Maxwell equations in phasor form are, 
 

 

 

 

 

 

or, 
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or, 

 

or, where 

 
An identical equation can be derived for . 

 
i.e., 

 

These equations 

 

 

are called homogeneous vector Helmholtz's equation. 

 
is called the wave number or propagation constant of the medium. 

 

Plane waves in Lossless medium: 

 
In a lossless medium, are real numbers, so k is real. 

 

In Cartesian coordinates each of the equations 6.1(a) and 6.1(b) are equivalent to 
three scalar Helmholtz's equations, one each in the components Ex, Ey and Ez or Hx 

, Hy, Hz. 

For example if we consider Ex component we can write 

 

 
.................................................(6.2) 

 

A uniform plane wave is a particular solution of Maxwell's equation assuming electric 

field (and magnetic field) has same magnitude and phase in infinite planes 

perpendicular to the direction of propagation. It may be noted that in the strict sense a 

uniform plane wave doesn't exist in practice as creation of such waves are possible 

with sources of infinite extent. However, at large distances from the source, the 

wavefront or the surface of the constant phase becomes almost spherical and a small 

portion of this large sphere can be considered to plane. The characteristics of plane 

waves are simple and useful for studying many practical JITnarios. 

 

Let us consider a plane wave which has only Ex component and propagating along z . 

Since the plane wave will have no variation along the plane perpendicular to z i.e., xy 

 
plane, . The Helmholtz's equation (6.2) reduces to, 



EC6403 ELECTROMAGNETIC FIELDS 

JIT Dept of EEE 101 

 

 

 

 

 

.....................................................................(6.3) 

The solution to this equation can be written as 

 

 

.........................................................(6.4) 

 
are the amplitude constants (can be determined from boundary 

conditions). In the time domain, 

............................(6.5) 

 
assuming are real constants. 

 
Here,  represents the forward traveling wave. The plot of 

for several values of t is shown in the Figure 6.1. 

 

 

 

Figure 6.1: Plane wave traveling in the + z direction 
 

As can be seen from the figure, at successive times, the wave travels in the +z direction. 

If we fix our attention on a particular point or phase on the wave (as shown by the dot) 

i.e. , = constant 

 
Then we see that as t is increased to , z also should increase to so that 
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Or, 

 

 
Or, 

 

When , 

 

 
we write = phase velocity . 

 

.....................................(6.6) 
 

If the medium in which the wave is propagating is free space i.e., 

 

 

 
 

Then 

 

Where 'C' is the speed of light. That is plane EM wave travels in free space with the 

speed of light. 

 
The wavelength is defined as the distance between two successive maxima (or minima 

or any other reference points). 

 

i.e.,   

or, 

 
or, 

 

 
Substituting , 
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or, .............................................. (6.7) 

 
Thus wavelength also represents the distance covered in one oscillation of the wave. 

Similarly, represents a plane wave traveling in the -z 

direction. 

The associated magnetic field can be found as follows: 

From (6.4), 

 

 
 
 

 

 
= 

 

 

= ............(6.8) 

 

 

 
where is the intrinsic impedance of the 

medium. When the wave travels in free space 

 
 

is the intrinsic impedance of the free space. 

 

 

In the time domain, 
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........... (6.9) 
 

Which represents the magnetic field of the wave traveling in the +z 

direction. For the negative traveling wave, 

 

...........(6.10) 

 
For the plane waves described, both the E & H fields are perpendicular to the 
direction of propagation, and these waves are called TEM (transverse 
electromagnetic) waves. 

 

The E & H field components of a TEM wave is shown in Fig 6.2. 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6.2 : E & H fields of a particular plane wave at time t. 
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 TEM Waves: 
 

So far we have considered a plane electromagnetic wave propagating in the z-direction. 

Let us now consider the propagation of a uniform plane wave in any arbitrary direction 

that doesn't necessarily coincides with an axis. 

 

For a uniform plane wave propagating in z-direction 

 

is a constant vector........................... 

(6.11) The more general form of the above equation is 

 

........................................... 

(6.12) This equation satisfies Helmholtz's equation 

provided, 

........................... (6.13) 

 
 

We   define   wave number  vector ........................... 

(6.14) And radius vector from the origin 
 

 

........................... (6.15) 

Therefore we can write 
 
 

........................... (6.16) 
 
 

Here =constant is a plane of constant phase and uniform amplitude just in the case of 

, 

 

z =constant denotes a plane of constant phase and uniform 

amplitude. If the region under consideration is charge free, 

 

 
 

Using the vector identity and noting that is constant we 
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can write, 
 
 

 

 
 

......................(6.17) 

 

i.e., is transverse to the direction of the 

propagation. 

 

The corresponding magnetic field can be computed as 

follows: 

 

 

Using the vector 

identity, 

 

 
Since is constant we can 

write, 

 

 

 
.....................(6.18) 

Where is the intrinsic impedance of the medium. We observe that is perpendicular 
 

to both and . Thus the electromagnetic wave represented by and is a 

TEM wave. 
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Plane waves in a lossy medium: 

In a lossy medium, the EM wave looses power as it propagates. Such a medium 
is conducting with conductivity and we can write: 

 

 

 

 

 
.....................(6.19) 

 
Where is called the complex permittivity. 

We have already discussed how an external electric field can polarize a dielectric and 

give rise to bound charges. When the external electric field is time varying, the 
polarization vector will vary with the same frequency as that of the applied field. As the 

frequency of the applied filed increases, the inertia of the charge particles tend to prevent 

the particle displacement keeping pace with the applied field changes. This results in 

frictional damping mechanism causing power loss. 

 
In addition, if the material has an appreciable amount of free charges, there will be 

ohmic losses. It is customary to include the effect of damping and ohmic losses in the 

imaginary part of . An equivalent conductivity represents all losses. 
 

 

The ratio is called loss tangent as this quantity is a measure of the power loss. 
 

 

 
 

Fig 6.3 : Calculation of Loss Tangent 

 

With reference to the Fig 6.3, 
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.......................... (6.20) 

 

where is the conduction current density and is displacement current density. The 

loss tangent gives a measure of how much lossy is the medium under  consideration. For 

a  good dielectric medium is  very small  and  the  medium  is  a good 

conductor if . A material may be a good conductor at low frequencies but 
behave as lossy dielectric at higher frequencies. 

 

For a source free lossy medium we can write 

 

 ...........................(6.21) 

.................... (6.22) 
 

Where 
 

Proceeding in the same manner we can write, 

 

 

 

is called the propagation constant. 

 
The real and imaginary parts and of the propagation constant can be computed 

as follows: 
 

 

 

 

And 
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................... (6.23a) 
 

 

 

 

Similarly .............................................................. (6.23b) 

 

Let us now consider a plane wave that has only x -component of electric field and 

propagate along z . 
 

 

................................... (6.24) 

Considering only the forward traveling wave 
 

 

 

 

 

 

 
Similarly, from , we can find 

 

 

 
Where 

 

 

 

................................... (6.25) 

 

 

 

 

..................................... (6.26) 

 

 

 

 
 

..................................... (6.27) 
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From (6.25) and (6.26) we find that as the wave propagates along z, it decreases in 

amplitude by a factor . Therefore is known as attenuation constant. Further and 

 

are out of phase by an angle . 

 

 
For low loss dielectric, , i.e., . 

 
Using  the  above condition approximate expression for and can be obtained as 

follows: 

 

 

 

 

 
 

 

 

 
& phase velocity 

 

 

 

 
For good conductors 

(6.29) 

 

 ............... (6.30) 
 

 

= ............... (6.31) 

 

 

 
 

............. 
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We have used the relation 

 

 

 

 
From (6.31) we can write 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

............... (6.32) 

 

 

 

 

 

 

 

 

 

 

 

 

 
..................... (6.33) 

 

And phase velocity 

 

 ..................... (6.34) 
 

 Poynting Vector and Power Flow in Electromagnetic Fields: 

 

Electromagnetic waves can transport energy from one point to another point. The 

electric and magnetic field intensities asscociated with a travelling electromagnetic 

wave can be related to the rate of such energy transfer. 

 

Let us consider Maxwell's Curl Equations: 

 

 
Using vector identity 
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the above curl equations we can write 
 

 

 
.............................................(6.35) 

 
In  simple medium where and are constant, we can 
write 

 

 

     and 

 

Applying Divergence theorem we can write, 

 

...........................(6.36) 
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The term represents the rate of change of energy stored in 

 
the electric and magnetic fields and  the term represents the power dissipation 

within the volume. Hence right hand side of the equation (6.36) represents the total 

decrease in power within the volume under consideration. 

 

 
The  left hand side of  equation  (6.36)  can  be written as where 

(W/mt2) is called the Poynting vector and it represents the power density 

vector associated with the electromagnetic field. The integration of the Poynting vector 

over any closed surface gives the net power flowing out of the surface. Equation (6.36) 

is referred to as Poynting theorem and it states that the net power flowing out of a given 

volume is equal to the time rate of decrease in the energy stored within the volume 

minus the conduction 

losses. 

 Poynting vector for the time harmonic case: 

 
For time harmonic case, the time variation is of the form , and we have seen that 

instantaneous value of a quantity is the real part of the product of a phasor quantity and 

when is used as reference. For example, if we consider the phasor 
 
 

 
then we can write the instanteneous field as 

 

 

.................................(6.37) 

 

when E0 is real. 
Let us consider two instanteneous quantities A and B such that 

 

 

where A and B are the phasor quantities. 

 
 

i. e, 
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Therefore, 

 

 

 
..............................(6.39) 

 

 

Since A and B are periodic with period , the time average value of the product form 

AB, denoted by can be written as 
 

 
 

.....................................(6.40) 
 

Further, considering the phasor quantities A and B, we find that 

 

 

and , where * denotes complex  conjugate. 

 

 
..............................................(6.41) 

 
The poynting vector can be expressed as 

 
 

...................................(6.42) 

 
If we consider a plane electromagnetic wave propagating in +z direction and has only 

component, from (6.42) we can write: 
 
 

 

Using (6.41) 

 

 

 
........................................(6.43) 
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where and , for the plane wave under 

consideration. For a general case, we can write 

 

 

.....................(6.44) 

We can define a complex Poynting vector 
 

 

and time average of the instantaneous Poynting vector is given by . 
 
 

 Electromagnetic Spectrum: 
 

The polarisation of a plane wave can be defined as the orientation of the electric field 

vector as a function of time at a fixed point in space. For an electromagnetic wave, the 

specification of the orientation of the electric field is sufficent as the magnetic field 

components are related to electric field vector by the Maxwell's equations. 

 
Let us consider a plane wave travelling in the +z direction. The wave has both Ex and Ey 
components. 

 

 ..........................................(6.45) 

The corresponding magnetic fields are given by, 

 

 

 

Depending upon the values of Eox and Eoy we can have several possibilities: 

1. If Eoy = 0, then the wave is linearly polarised in the x-direction. 

2. If Eoy = 0, then the wave is linearly polarised in the y-direction. 

3. If Eox and Eoy are both real (or complex with equal phase), once again we get a 
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linearly polarised wave with the axis of polarisation inclined at an angle , 
with respect to the x-axis. This is shown in fig 6.4. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

emerging 

Fig 6.4:Linear Polarisation 

 

4. If  Eox  and Eoy  are complex with different phase angles, will not point to a single 

spatial direction. This is explained as follows: 

 
Let 

 

 

Then, 

 

 

and  ....................................(6.46) 

 
To keep the things simple, let us consider a =0 and . Further, let us study the nature 

of the electric field on the z =0 plain. 

 

From equation (6.46) we find that, 
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.....................................(6.47) 
 

and the electric field vector at z = 0 can be written as 

 
 

.............................................(6.48) 

 

Assuming , the plot of for various values of t is hown in figure 

6.5. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.5:Plot of E(o,t) 

 

From equation (6.47) and figure (6.5) we observe that the tip of the arrow 

representing electric field vector traces qn ellipse and the field is said to be 

elliptically polarised. 

 

Figure 6.6: Polarisation ellipse 
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The polarisation ellipse shown in figure 6.6 is defined by its axial ratio(M/N, the ratio of 

semimajor to semiminor axis), tilt angle (orientation with respect to xaxis) and sense of 

rotation(i.e., CW or CCW). 

 

Linear polarisation can be treated as a special case of elliptical polarisation, for which the 

axial ratio is infinite. 

 

In  our example, if , from equation (6.47), the tip of the arrow representing 

electric field vector traces out a circle. Such a case is referred to as Circular Polarisation. 

For circular polarisation the axial ratio is unity. 
 

 
 

 

 

Figure 6.7:Circular Polarisation (RHCP) 

 
Further, the circular polarisation is aside to be right handed circular polarisation (RHCP) if 
the electric field vector rotates in the direction of the fingers of the right hand when the 
thumb 
points in the direction of propagation-(same and CCW). If the electric field vector 
rotates in the opposite direction, the polarisation is asid to be left hand circular 
polarisation (LHCP) (same as CW). 

 

In AM radio broadcast, the radiated electromagnetic wave is linearly polarised with the 

field vertical to the ground( vertical polarisation) where as TV signals are 

horizontally polarised waves. FM broadcast is usually carried out using circularly 

polarised waves. 

 

In radio communication, different information signals can be transmitted at the same 

frequency at orthogonal polarisation ( one signal as vertically polarised other 

horizontally polarised or one as RHCP while the other as LHCP) to increase capacity. 

Otherwise, same signal can be transmitted at orthogonal polarisation to obtain diversity 
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gain to improve reliability of transmission. 

 

 Behaviour of Plane waves at the inteface of two media: 

 

We have considered the propagation of uniform plane waves in an unbounded 

homogeneous medium. In practice, the wave will propagate in bounded regions 

where several values of will be present. When plane wave travelling in one 

medium meets a different medium, it is partly reflected and partly transmitted. In 

this section, we consider wave reflection and transmission at planar boundary 

between two media. 
 

 

Fig 6.8 : Normal Incidence at a plane boundary 

 

Case1: Let z = 0 plane represent the interface between two media. Medium 1 

is characterised by and medium 2 is characterized by . 

Let the subscripts 'i' denotes incident, 'r' denotes reflected and 't' denotes transmitted 

field components respectively. 
 

The incident wave is assumed to be a plane wave polarized along x and travelling in 

medium 

 

1 along direction. From equation (6.24) we can write 

 
 

..................(6.49.a) 

 

 
......................(6.49.b) 
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where and . 
 

Because of the presence of the second medium at z =0, the incident wave will 

undergo partial reflection and partial transmission. 

The reflected wave will travel along in medium 

 
1. The reflected field components are: 

 

 

...............................................(6.50a) 
 

 

.........(6.50b) 
 

The transmitted wave will travel in medium 2 along for which the field components are 

 
 

............................................(6.51a) 

 
 

............................................(6.51b) 

 

 

 

where and 
 

In medium 1, 

and 
 

and in medium 2, 

and 
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Applying boundary conditions at the interface z = 0, i.e., continuity of tangential 
field components and noting that incident, reflected and transmitted field 
components are tangential at the boundary, we can write 

 

 

& 
 

From equation 6.49 to 6.51 we get, 

 
..............................................................(6.52a) 

 

 

 
 

..............................................................(6.52b) 
 

Eliminating 

Eto , 

 

 
or, 

 
or, 

 

 
...............(6.53) 

is called the reflection coefficient.  

From equation (6.52), we can 

write 

 

or, 
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........................................(6.54) 
 

is called the transmission 

coefficient. We observe that, 

ELECTROMAGNETIC FIELDS 

 

 

 

 

 

 

 
........................................(6.55) 

 

The following may be noted 

 

(i) both and T are dimensionless and may be complex 

(ii) 
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Let us now consider specific cases: 

 

Case I: Normal incidence on a plane conducting boundary 

 
The   medium   1   is perfect  dielectric and medium 2 is perfectly conducting 

. 

 

 

 

 

From (6.53) and (6.54) 

 
= -1 

 
and T =0 

 
Hence the wave is not transmitted to medium 2, it gets reflected entirely from the 
interface to the medium 1. 

 
 

 
& 

 

 .................................(6.56) 

Proceeding in the same manner for the magnetic field in region 1, we can show that, 

 

 

...............................................................................(6.57) 
 

The wave in medium 1 thus becomes a standing wave due to the super position of a 

forward travelling wave and a backward travelling wave. For a given ' t', both and 

vary 
sinusoidally with distance measured from z = 0. This is shown in figure 6.9. 
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Figure 6.9: Generation of standing wave 

 

Zeroes of E1(z,t) and Maxima of H1(z,t). 

Maxima of E1(z,t) and zeroes of H1(z,t). 

 

 
 

  .......(6.58) 

Case2: Normal incidence on a plane dielectric 

boundary 

 
If the medium 2 is not a perfect conductor (i.e. ) partial reflection will result. There 

will be a reflected wave in the medium 1 and a transmitted wave in the medium 2.Because 

of the reflected wave, standing wave is formed in medium 1. 

From equation (6.49(a)) and equation (6.53) we can write 
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..................(6.59) 
 

Let us consider the JITnario when both the media are dissipation less i.e. perfect 

dielectrics ( ) 

 

 

 

 

..................(6.60) 

 
In this case both and become real numbers. 

 

 

 

 
 

..................(6.61) 

 
From (6.61), we can see that, in medium 1 we have a traveling wave component 
with amplitude TEio and a standing wave component with amplitude 2JEio. 

The location of the maximum and the minimum of the electric and magnetic field 
components in the medium 1from the interface can be found as follows. 

 

The electric field in medium 1 can be written as 

 

..................(6.62) 

 

If i.e. >0 

The maximum value of the electric field is 

 
 

..................(6.63) 

 

and this occurs when 
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or ,   n = 0, 1, 2, 3 ..................... (6.64) 

 

The  minimum value of 

is 

 

.................(6.65) 

And this occurs when 

 

 
 

 

or , n = 0, 1, 2, 
 

3.............................(6.66) For i.e. <0 

 

The  maximum value of is which occurs at the zmin locations and the 

minimum 

 

value of is which occurs at zmax locations as given by the equations (6.64) 

and (6.66). 

 
 

From our discussions so far we observe that can be written as 

 

 
 

.................(6.67) 

The quantity S is called as the standing wave ratio. 

As the range of S is given 

by 

From (6.62), we can write the expression for the magnetic field in medium 1 as 

 

 
.................(6.68) 
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From (6.68) we find that     will be maximum at locations where     is minimum and 

vice versa. 

In medium 2, the transmitted wave propagates in the + z direction. 

Oblique Incidence of EM wave at an interface 

So far we have discuss the case of normal incidence where electromagnetic wave 

traveling in a lossless medium impinges normally at the interface of a second medium. 
In this section we shall consider the case of oblique incidence. As before, we consider 

two cases 

 
i. When the second medium is a perfect 
conductor. ii. When the second medium is a perfect 
dielectric. 

 

A plane incidence is defined as the plane containing the vector indicating the direction 

of propagation of the incident wave and normal to the interface. We study two specific 

cases  when  the  incident  electric  field      is  perpendicular  to  the  plane  of incidence 

(perpendicular polarization) and is parallel to the plane of incidence (parallel 

polarization). For a general case, the incident wave may have arbitrary polarization but 

the same can be expressed as a linear combination of these two individual cases. 

 

Oblique Incidence at a plane conducting boundary i. Perpendicular Polarization 

The situation is depicted in figure 

6.10. 
 

Figure 6.10: Perpendicular 

Polarization 

 

As the EM field inside the perfect conductor is zero, the interface reflects the incident 

plane wave. and respectively represent the unit vector in the direction of 

propagation of the incident and reflected waves,  is  the angle of  incidence and  is 
the angle of reflection. 
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We find 

that 

 

 
 

............................(6.69) 
 

Since the incident wave is considered to be perpendicular to the plane of incidence, 

which for the present case happens to be xz plane, the electric field has only y- 

component. 

 

 
The corresponding magnetic field is given by 

 

 

 

 

...........................(6.70) 
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Similarly, we can write the reflected waves as 

 

 

 
...................................................(6.71) 

Since at the interface z=o, the tangential electric field is zero. 
 

...........................................(6.72) 

Consider in equation (6.72) is satisfied if we have 

 

 

..................................(6.73) 
 

The condition is Snell's law of reflection. 

 

..................................(6.74) 
 

 

 

 

 
 

 
The total electric field is given by 

 

 

..................................(6.75) 

 

 

 

 
..................................(6.76) 

 

Similarly, total magnetic field is given by 

 

............................(6.77) 

 
From eqns (6.76) and (6.77) we observe that 

 
1. Along z direction i.e. normal to the boundary 

y component of and  x component of maintain standing wave patterns 

according to and 
propagates along z 

. No average power where 
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as y component of and x component of are out of phase. 
2. Along x i.e. parallel to the interface 

y component of and z component of are in phase (both time and space) and 
propagate with phase velocity 

 

 

 

 
 

.............................(6.78) 

 

 

The wave propagating along the x direction has its amplitude varying with z and hence 

constitutes a non uniform plane wave. Further, only electric field  is perpendicular to 

the direction of propagation (i.e. x), the magnetic field has component along the 

direction of propagation. Such waves are called transverse electric or TE waves. 

 

ii. Parallel Polarization: 

 
In this case also and are given by equations (6.69). Here and have only 

y component. 
 

 

Figure 6.11: Parallel Polarization 

With reference to fig (6.11), the field components can be written 

as: Incident field components: 
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............................(6.79) 

Reflected field components: 
 

 

 

 

 

............................(6.80) 

Since the total tangential electric field component at the interface is zero. 

 

 
Which leads to and as before. 

 
Substituting these quantities in (6.79) and adding the incident and reflected electric 
and magnetic field components the total electric and magnetic fields can be written 
as 

 

...........................(6.81) 

 
Once again, we find a standing wave pattern along z for the x and y components of and 

, while a non uniform plane wave propagates along x with a phase velocity given 

 

by where . Since, for this propagating wave, magnetic field is 

in 
transverse direction, such waves are called transverse magnetic or TM waves. 

 

 

 Oblique incidence at a plane dielectric interface 

 
We continue our discussion on the behavior of plane waves at an interface; this time we 

consider a plane dielectric interface. As earlier, we consider the two specific cases, 

namely parallel and perpendicular polarization. 
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Fig 6.12: Oblique incidence at a plane dielectric 

interface 
For the case of a plane dielectric interface, an incident wave will be reflected partially 
and transmitted partially. 

 
In Fig(6.12), corresponds respectively to the angle of incidence, reflection 

and transmission. 

 

1. Parallel Polarization 

As discussed previously, the incident and reflected field components can be written as 

 

 

 

 
.............. (6.82) 

 

 

 
 

 

 

..........................(6.83) 
 

In terms of the reflection coefficient 
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. 
 

The transmitted filed can be written in terms of the transmission coefficient T 

 

 

 

 
..........................(6.85) 

 

 

We can now enforce the continuity of tangential field components at the boundary i.e. z=0 

 

 

 
 

..........................(6.86) 
 

If both and are to be continuous at z=0 for all x , then form the phase matching 

we have 

 

 
We find that 

 

 

..........................(6.87) 

Further, from equations (6.86) and (6.87) we have 

 

 

 

..........................(6.88) 

 

 
 

 

 

 
.........................(6.84) 
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or 

..........................(6.89) 
 

 
 

 

 
 

..........................(6.90) 

 

From equation (6.90) we find that there exists  specific angle for which = 0 such 

that 

 

 

 

or..................................................................... (6.91) 
 

 

 

 

 

For non magnetic material 

Using this condition 

 

Further, 

.........................(6.92) 

 

 

 

 

 

.........................(6.93) 

From equation (6.93), solving for we get 

 

 

This angle of incidence for which = 0 is called Brewster angle. Since we are dealing 

with parallel polarization we represent this angle by so that 
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2. Perpendicular Polarization 

For this case 
 

 

 
 

 

.........................(6.94) 

 

 

 

 
.........................(6.95) 

 

 

 

 
.........................(6.96) 

 

Using continuity of field components at z=0 

 

 

 
 

.........................(6.97) 
 

As in the previous case 

 

 

 

 

.........................(6.98) 
 

Using these conditions we can write 

 

 

 

.........................(6.99) 



EC6403 ELECTROMAGNETIC FIELDS 

JIT Dept of EEE 136 

 

 

 

 
 

From equation (6.99) the reflection and transmission coefficients for the 
perpendicular polarization can be computed as 

 

 

 

 
 

.........................(6.100) 

We observe that if = 0 for an angle of incidence 

 

 
 

 
 

 

 
Again 

 
 

 

 

or   

or  

or ............................................................... (6.101) 
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We observe if i.e. in this case of non magnetic material Brewster angle does 

not exist as the denominator or equation (6.101) becomes zero. Thus for perpendicular 

polarization in dielectric media, there is Brewster angle so that can be made equal to  

zero. 

 

From our previous discussion we observe that for both 

polarizations 

 

 
If 

 

 
For ; 

 

 

The incidence angle for which i.e. is called the critical angle of 

incidence. 

 
 :Electromagnetic spectrum: 

If the angle of incidence is larger than total internal reflection occurs. For such case an 

evaneJITnt wave exists along the interface in the x direction (w.r.t. fig (6.12)) that attenuates 

exponentially in the normal i.e. z direction. Such waves are tightly bound to the interface 

and are called surface waves and waves spreading in the field of electric and magnetic 

together called electromagnetic spectrum. 


