JEPPIAAR HETTER OF RESILEN

JEPPIAAR INSTITUTE OF TECHNOLOGY

"Self-Belief | Self Discipline | Self Respect"

CS8491 COMPUTER ARCHITECTURE LTPC 3003

- To learn the basic structure and operations of a computer.
- To learn the arithmetic and logic unit and implementation of fixed-point and floating point arithmetic unit.
- To learn the basics of pipelined execution.
- To understand parallelism and multi-core processors.
- To understand the memory hierarchies, cache memories and virtual memories.
- To learn the different ways of communication with I/O devices

UNIT I BASIC STRUCTURE OF A COMPUTER SYSTEM

9

Functional Units – Basic Operational Concepts – Performance – Instructions: Language of the Computer – Operations, Operands – Instruction representation – Logical operations – decision making – MIPS Addressing.

UNIT II ARITHMETIC FOR COMPUTERS

9

Addition and Subtraction – Multiplication – Division – Floating Point Representation – Floating Point Operations – Subword Parallelism

UNIT III PROCESSOR AND CONTROL UNIT

9

A Basic MIPS implementation – Building a Datapath – Control Implementation Scheme – Pipelining – Pipelined datapath and control – Handling Data Hazards & Control Hazards – Exceptions.

UNIT IV PARALLELISIM

9

Parallel processing challenges – Flynn's classification – SISD, MIMD, SIMD, SPMD, and Vector Architectures – Hardware multithreading – Multi-core processors and other Shared Memory Multiprocessors – Introduction to Graphics Processing Units, Clusters, Warehouse Scale Computers and other Message-Passing Multiprocessors.

UNIT V MEMORY & I/O SYSTEMS

9

Memory Hierarchy – memory technologies – cache memory – measuring and improving cache performance – virtual memory, TLB's – Accessing I/O Devices – Interrupts – Direct Memory Access – Bus structure – Bus operation – Arbitration – Interface circuits – USB.

TOTAL: 45 PERIODS

OUTCOMES:

On Completion of the course, the students should be able to:

- Understand the basics structure of computers, operations and instructions.
- Design arithmetic and logic unit.
- Understand pipelined execution and design control unit.
- Understand parallel processing architectures.
- Understand the various memory systems and I/O communication.

TEXT BOOKS:

- 1. David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Fifth Edition, Morgan Kaufmann / Elsevier, 2014.
- 2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky and Naraig Manjikian, Computer Organization and Embedded Systems, Sixth Edition, Tata McGraw Hill, 2012.

REFERENCES:

- 1. William Stallings, Computer Organization and Architecture Designing for Performance, Eighth Edition, Pearson Education, 2010.
- 2. John P. Hayes, Computer Architecture and Organization, Third Edition, Tata McGraw Hill, 2012.
- 3. John L. Hennessey and David A. Patterson, Computer Architecture A Quantitative Approachl, Morgan Kaufmann / Elsevier Publishers, Fifth Edition, 2012.