
CS8603:Distributed Systems Department of CSE

2020 – 2021 1 Jeppiaar Institute of Technology

UNIT V PROCESS & RESOURCE MANAGEMENT

Process Management: Process Migration: Features, Mechanism - Threads: Models, Issues,

Implementation. Resource Management: Introduction- Features of Scheduling Algorithms –Task

Assignment Approach – Load Balancing Approach – Load Sharing Approach

PROCESS MANAGEMENT

Process management is the ensemble of activities of planning and monitoring the performance of

a business process. The term usually refers to the management of business processes and

manufacturing processes.Business process management (BPM) and business process reengineeringare

interrelated, but not identical

Process management is the application of knowledge, skills, tools, techniquesand systems to define,

visualize, measure, control, report and improve processes with the goal to meet

customer requirements profitably. It can be differentiated from program management in that program

management is concerned with managing a group of inter-dependent projects. From nother viewpoint,

process management includes program management. In project management, proce s management is

the use of a repeatable process to improve the outcome of the project.ISO 9000 promotes the

process approach to managing an organization.

...promotes the adoption of a process approach when developing, implementing and improving the

effectiveness of a quality management system, to enhance customer satisfaction by meeting

customer requirements.

In computing, process migration is a specialized form of process management

whereby processes are moved from one computing environment to another. This originated in

distributed computing, but is now used more widely. On multicoremachines (multiple cores on one

processor or multiple processors) process migration happens as a standard part ofprocess scheduling,

and it is quite easy to migrate a process within a given machine, since most resources (memory, files,

sockets) do not need to be changed, only the execution context (primarily program counter and

registers).

The traditional form of process migration is in computer clusters where processes are moved from

machine to machine, which is significantly more difficult, as it requires serializing the process image

and migrating or reacquiring resources at the new machine. Process migration is implemented in,

among others, OpenMosix. It was pioneered by the Sprite OS from theUniversity of California,

Berkeley.

https://en.wikipedia.org/wiki/Business_process
https://en.wikipedia.org/wiki/Manufacturing_process_management
https://en.wikipedia.org/wiki/Business_process_management
https://en.wikipedia.org/wiki/Business_process_reengineering
https://en.wikipedia.org/wiki/Business_process_reengineering
https://en.wikipedia.org/wiki/Knowledge
https://en.wikipedia.org/wiki/Skills
https://en.wikipedia.org/wiki/Tool
https://en.wiktionary.org/wiki/technique
https://en.wikipedia.org/wiki/Process_control
https://en.wikipedia.org/wiki/Customer
https://en.wikipedia.org/wiki/Profitably
https://en.wikipedia.org/wiki/Program_management
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/ISO_9000
https://en.wikipedia.org/wiki/ISO_9000
https://en.wikipedia.org/wiki/Organization
https://en.wikipedia.org/wiki/Quality_management
https://en.wikipedia.org/wiki/Customer_satisfaction
https://en.wikipedia.org/wiki/Customer_requirement
https://en.wikipedia.org/wiki/Process_management_(computing)
https://en.wikipedia.org/wiki/Process_management_(computing)
https://en.wikipedia.org/wiki/Process_management_(computing)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Multicore
https://en.wikipedia.org/wiki/Process_scheduling
https://en.wikipedia.org/wiki/Process_scheduling
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Process_image
https://en.wikipedia.org/wiki/Process_image
https://en.wikipedia.org/wiki/Process_image
https://en.wikipedia.org/wiki/OpenMosix
https://en.wikipedia.org/wiki/Sprite_(operating_system)
https://en.wikipedia.org/wiki/University_of_California%2C_Berkeley
https://en.wikipedia.org/wiki/University_of_California%2C_Berkeley

CS8603:Distributed Systems Department of CSE

2020 – 2021 2 Jeppiaar Institute of Technology

DISTRIBUTED SHARED MEMORY

Distributed shared memory (DSM) is an abstraction used for sharing data between computers that

do not share physical memory. Processes access DSM by reads and updates to what appears to be

ordinary memory within their address space. However, an underlying runtime system ensures

transparently that processes executing at different computers observe the updates made by one

another.

The main point of DSM is that it spares the programmer the concerns of message passing when

writing applications that might otherwise have to use it. DSM is primarily a tool for parallel

applications or for any distributed application or group of applications in which individual shared

data items can be accessed directly. DSM is in general less appropriate in client-server systems,

where clients normally view server-held resources as abstract data and access them by request (for

reasons of modularity and protection).

CS8603:Distributed Systems Department of CSE

2020 – 2021 5 Jeppiaar Institute of Technology

In distributed memory multiprocessors and clusters of off-the-shelf computing components (see

Section 6.3), the processors do not share memory but are connected by a very high-speed network.

These systems, like general-purpose distributed systems, can scale to much greater numbers of

processors than a shared-memory multiprocessor’s 64 or so. A central question that has been

pursued by the DSM and multiprocessor research communities is whether the investment in

knowledge of shared memory algorithms and the associated software can be directly transferred to

a more scalable distributed memory architecture.

Message passing versus DSM

As a communication mechanism, DSM is comparable with message passing rather than

with request-reply-based communication, since its application to parallel processing, in

particular, entails the use of asynchronous communication. The DSM and message passing

approaches to programming can be contrasted as follows:

Programming model:

Under the message passing model, variables have to be marshalled from one process, transmitted

and unmarshalled into other variables at the receiving process. By contrast, with shared memory

the processes involved share variables directly, so no marshalling is necessary – even of pointers

to shared variables – and thus no separate communication operations are necessary.

Efficiency :

Experiments show that certain parallel programs developed for DSM can be made to perform about

as well as functionally equivalent programs written for message passing platforms on the same

hardware – at least in the case of relatively small numbers of computers (ten or so). However, this

result cannot be generalized. The performance of a program based on DSM depends upon many

factors, as we shall discuss below – particularly the pattern of data sharing. Implementation

approaches to DSM

Distributed shared memory is implemented using one or a combination of specialized hardware,

conventional paged virtual memory or middleware:

Hardware:

Shared-memory multiprocessor architectures based on a NUMA architecture rely on specialized

hardware to provide the processors with a consistent view of shared memory. They handle

CS8603:Distributed Systems Department of CSE

2020 – 2021 7 Jeppiaar Institute of Technology

memory LOAD and STORE instructions by communicating with remote memory and cache

modules as necessary to store and retrieve data.

Paged virtual memory:

Many systems, including Ivy and Mether , implement DSM as a region of virtual memory

occupying the same address range in the address space of every participating process.

#include "world.h"

struct shared { int a, b; };

Program Writer:

main()

{

struct shared *p;

methersetup(); /* Initialize the Mether runtime */

p = (struct shared *)METHERBASE;

/* overlay structure on METHER segment */

p->a = p->b = 0; /* initialize fields to zero */

while(TRUE){ /* continuously update structure fields */

p –>a = p –>a + 1;

p –>b = p –>b - 1;

}

}

Program Reader:

main()

{

struct shared *p;

methersetup();

p = (struct shared *)METHERBASE;

while(TRUE){ /* read the fields once every second */

printf("a = %d, b = %d\n", p –>a, p –>b);

sleep(1);

}

}

CS8603:Distributed Systems Department of CSE

2020 – 2021 9 Jeppiaar Institute of Technology

Middleware:

Some languages such as Orca, support forms of DSM without any hardware or paging support,

in a platform-neutral way. In this type of implementation, sharing is implemented by

communication between instances of the user-level support layer in clients and servers. Processes

make calls to this layer when they access data items in DSM. The instances of this layer at the

different computers access local data items and communicate as necessary to maintain

consistency.

Design and implementation issues

The synchronization model used to access DSM consistently at the application level; the DSM

consistency model, which governs the consistency of data values accessed from different

computers; the update options for communicating written values between computers; the

granularity of sharing in a DSM implementation; and the problem of thrashing.

Structure

A DSM system is just such a replication system. Each application process is presented with some

abstraction of a collection of objects, but in this case the ‘collection’ looks more or less like

memory. That is, the objects can be addressed in some fashion or other. Different approaches to

DSM vary in what they consider to be an ‘object’ and in how objects are addressed. We consider

three approaches, which view DSM as being composed respectively of contiguous bytes,

language-level objects or immutable data items.

Byte-oriented

This type of DSM is accessed as ordinary virtual memory – a contiguous array of bytes. It is the

view illustrated above by the Mether system. It is also the view of many other DSM systems,

including Ivy.It allows applications (and language implementations) to impose whatever data

structures they want on the shared memory. The shared objects are directly addressible memory

locations (in practice, the shared locations may be multi-byte words rather than individual bytes).

The only operations upon those objects are read (or LOAD) and write (or STORE). If x and y are

two memory locations, then we denote instances of these operations as follows:

CS8603:Distributed Systems Department of CSE

2020 – 2021 11 Jeppiaar Institute of Technology

Object-oriented

The shared memory is structured as a collection of language-level objects with higher-level

semantics than simple read / write variables, such as stacks and dictionaries. The contents of the

shared memory are changed only by invocations upon these objects and never by direct access to

their member variables. An advantage of viewing memory in this way is that object semantics can

be utilized when enforcing consistency.

Immutable data

When reading or taking a tuple from tuple space, a process provides a tuple specification and the

tuple space returns any tuple that matches that specification – this is a type of associative

addressing. To enable processes to synchronize their activities, the read and take operations both

block until there is a matching tuple in the tuple space.

Synchronization model

Many applications apply constraints concerning the values stored in shared memory. This is as

true of applications based on DSM as it is of applications written for sharedmemory

multiprocessors (or indeed for any concurrent programs that share data, such as operating system

kernels and multi-threaded servers). For example, if a and b are two variables stored in DSM, then

a constraint might be that a=b always. If two or moreprocesses execute the following code:

a:= a + 1;

b := b + 1;

then an inconsistency may arise. Suppose a and b are initially zero and that process 1gets as far

as setting a to 1. Before it can increment b, process 2 sets a to 2 and b to 1.

Consistency model

The local replica manager is implemented by a combination of middleware (the DSM runtime

layer in each process) and the kernel. It is usual for middleware to perform the majority of DSM

processing. Even in a page-based DSM implementation, the kernel usually provides only basic

page mapping, page-fault handling and communication mechanisms and middleware is

responsible for implementing the page-sharing policies. If DSM segments are persistent, then one

or more storage servers (for example, file servers) will also act as replica managers.

CS8603:Distributed Systems Department of CSE

2020 – 2021 13 Jeppiaar Institute of Technology

Sequential consistency

A DSM system is said to be sequentially consistent if for any execution there is some interleaving

of the series of operations issued by all the processes that satisfies the following two criteria:

SC1: The interleaved sequence of operations is such that if R(x) a occurs in the sequence,

then either the last write operation that occurs before it in the interleaved sequence is W(x) a, or

no write operation occurs before it and a is the initial value of x.

SC2: The order of operations in the interleaving is consistent with the program order in

which each individual client executed them.

CS8603:Distributed Systems Department of CSE

2020 – 2021 14 Jeppiaar Institute of Technology

Coherence

Coherence is an example of a weaker form of consistency. Under coherence, every process agrees

on the order of write operations to the same location, but they do not necessarily agree on the

ordering of write operations to different locations. We can think of coherence as sequential

consistency on a locationby- location basis. Coherent DSM can be implemented by taking a

protocol for implementing sequential consistency and applying it separately to each unit of

replicated data – for example, each page.

Weak consistency

This model exploits knowledge of synchronization operations in order to relax memory

consistency, while appearing to the programmer to implement sequential consistency (at least,

under certain conditions that are beyond the scope of this book). For example, if the programmer

uses a lock to implement a critical section, then a DSM system can assume that no other process

may access the data items accessed under mutual exclusion within it. It is therefore redundant for

the DSM system to propagate updates to these items until the process leaves the critical section.

While items are left with ‘inconsistent’ values some of the time, they are not accessed at those

points; the execution appears to be sequentially consistent.

Update options

Two main implementation choices have been devised for propagating updates made by one process

to the others: write-update and write-invalidate. These are applicable to a variety of DSM

consistency models, including sequential consistency. In outline, the options are as follows:

Write-update: The updates made by a process are made locally and multicast to all other replica

managers possessing a copy of the data item, which immediately modify the data read by local

processes. Processes read the local copies of data items, without the need for communication. In

addition to allowing multiple readers, several processes may write the same data item at the same

time; this is known as multiple-reader/multiple-writer sharing.

CS8603:Distributed Systems Department of CSE

2020 – 2021 16 Jeppiaar Institute of Technology

Write-invalidate: This is commonly implemented in the form of multiple-reader/ single-writer

sharing. At any time, a data item may either be accessed in read-only mode by one or more

processes, or it may be read and written by a single process. An item that is currently accessed in

read-only mode can be copied indefinitely to other processes. When a process attempts to write

to it, a multicast message is first sent to all other copies to invalidate them and this is acknowledged

before the write can take place; the other processes are thereby prevented from reading stale data

(that is, data that are not up to date). Any processes attempting to access the data item are blocked

if a writer exists.

Granularity

An issue that is related to the structure of DSM is the granularity of sharing. Conceptually, all

processes share the entire contents of a DSM. As programs sharing DSM execute, however, only

certain parts of the data are actually shared and then only for certain times during the execution.

It would clearly be very wasteful for the DSM implementation always to transmit the entire

contents of DSM as processes access and update it.

Thrashing

A potential problem with write-invalidate protocols is thrashing. Thrashing is said to occur where

the DSM runtime spends an inordinate amount of time invalidating and transferring shared data

compared with the time spent by application processes doing useful work. It occurs when several

processes compete for the same data item, or for falsely shared data items.

CS8603:Distributed Systems Department of CSE

2020 – 2021 18 Jeppiaar Institute of Technology

RESOURCE MANAGEMENT

Resource Management is the efficient and effective development of an organization's resources

when they are needed. Such resources may include financial resources, inventory, human skills,

production resources, or information technology (IT).

In the realm of project management, processes, techniques and philosophies as to the best approach

for allocating resources have been developed. These include discussions on functional vs. cross-

functional resource allocation as well as processes espoused by organizations like the Project

Management Institute (PMI) through their Project Management Body of Knowledge (PMBOK)

methodology of project management. Resource management is a key element to activity resource

estimating and project human resource management. Both are essential components of a

comprehensive project management plan to execute and monitor a project successfully As is the case

with the larger discipline of project management, there are resource management softwaretools

available that automate and assist the process of resource allocation to projects and portfolio resource

transparency including supply and demand of resources. The goal of these tools typically is to ensure

that: (i) there are employees within our organization with required specific skill set and desired profile

required for a project, (ii) decide the number and skill sets of new employees to hire, and (iii) allocate

the workforce to various projects.[3]

 Corporate Resource Management Process

Large organizations usually have a defined corporate resource management process which mainly

guarantees that resources are never over-allocated across multiple projects Peter Drucker wrote of

the need to focus resources, abandoning a less promising initiatives for every new project taken on,

as fragmentation inhibits results

 Techniques

One resource management technique is resource leveling. It aims at smoothing the stock of

resources on hand, reducing both excess inventories and shortages.

The required data are: the demands for various resources, forecast by time period into the future as

far as is reasonable, as well as the resources' configurations required in those demands, and

the supply of the resources, again forecast by time period into the future as far as is reasonable.

The goal is to achieve 100% utilization but that is very unlikely, when weighted by important

metrics and subject to constraints, for example: meeting a minimum service level, but otherwise

minimizing cost. A Project Resource Allocation Matrix (PRAM) is maintained to visualize the

resource allocations against various projects.

The principle is to invest in resources as stored capabilities, then unleash the capabilities as

demanded.

https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Resource_allocation
https://en.wikipedia.org/wiki/Project_Management_Institute
https://en.wikipedia.org/wiki/Project_Management_Institute
https://en.wikipedia.org/wiki/Project_Management_Body_of_Knowledge
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/List_of_resource_management_software
https://en.wikipedia.org/wiki/Supply_and_demand
https://en.wikipedia.org/wiki/Resource_management#cite_note-3
https://en.wikipedia.org/wiki/Resource_leveling
https://en.wikipedia.org/wiki/Demand_(economics)
https://en.wikipedia.org/wiki/Supply_(economics)
https://en.wikipedia.org/wiki/Utilization
https://en.wikipedia.org/wiki/Cost

CS8603:Distributed Systems Department of CSE

2020 – 2021 19 Jeppiaar Institute of Technology

A dimension of resource development is included in resource management by which investment in

resources can be retained by a smaller additional investment to develop a new capability that is

demanded, at a lower investment than disposing of the current resource and replacing it with another

that has the demanded capability.

In conservation, resource management is a set of practices pertaining to maintaining natural systems

integrity. Examples of this form of management are air resource management, soil

conservation, forestry, wildlife management and water resourcemanagement. The broad term for this

type of resource management is natural resource management (NRM).

 Load balancing (computing)

load balancing distributes workloads across multiple computing resources, such as computers,

a computer cluster, network links, central processing units or disk drives. Load balancing aims to

optimize resource use, maximizethroughput, minimize response time, and avoid overload of any

single resource. Using multiple components with load balancing instead of a single component may

increase reliability and availability through redundancy. Load balancing usually involves dedicated

software or hardware, such as a multilayer switch or a Domain Name System server process.

Load balancing differs from channel bonding in that load balancing divides traffic between network

interfaces on a network socket (OSI model layer 4) basis, while channel bonding implies a division

of traffic between physical interfaces at a lower level, either per packet (OSI model Layer 3) or on a

data link (OSI model Layer 2) basis with a protocol like shortest path bridging.

One of the most commonly used applications of load balancing is to provide a single Internet service

from multiple servers, sometimes known as a server farm. Commonly load-balanced systems include

popular web sites, large Internet Relay Chatnetworks, high-bandwidth File Transfer Protocol sites,

Network News Transfer Protocol (NNTP) servers, Domain Name System (DNS) servers, and

databases.

Round-robin DNS

An alternate method of load balancing, which does not necessarily require a dedicated software or

hardware node, is calledround robin DNS. In this technique, multiple IP addresses are associated with

a single domain name; clients are expected to choose which server to connect to. Unlike the use of a

dedicated load balancer, this technique exposes to clients the existence of multiple backend servers.

The technique has other advantages and disadvantages, depending on the degree of control over the

DNS server and the granularity of load balancing desired.

Another more effective technique for load-balancing using DNS is to delegate www.example.org as

a sub-domain whose zone is served by each of the same servers that are serving the web site. This

technique works particularly well where individual servers are spread geographically on the Internet.

For example,

one.example.org A 192.0.2.1

two.example.org A 203.0.113.2

www.example.org NS one.example.org

www.example.org NS two.example.org

https://en.wikipedia.org/wiki/Habitat_conservation
https://en.wikipedia.org/wiki/Air#Air_pollution
https://en.wikipedia.org/wiki/Soil_conservation
https://en.wikipedia.org/wiki/Soil_conservation
https://en.wikipedia.org/wiki/Forestry
https://en.wikipedia.org/wiki/Wildlife
https://en.wikipedia.org/wiki/Water_resource
https://en.wikipedia.org/wiki/Natural_resource_management
https://en.wikipedia.org/wiki/Workload
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Disk_drives
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Multilayer_switch#Layer_4_Load_Balancer
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Channel_bonding
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Shortest_path_bridging
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Server_farm
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Network_News_Transfer_Protocol
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Round_robin_DNS
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Domain_name
http://www.example.org/
http://www.example.org/
http://www.example.org/

CS8603:Distributed Systems Department of CSE

2020 – 2021 21 Jeppiaar Institute of Technology

On server two the same zone file contains:

This way, when a server is down, its DNS will not respond and the web service does not receive any

traffic. If the line to one server is congested, the unreliability of DNS ensures less HTTP traffic reaches

that server. Furthermore, the quickest DNS response to the resolver is nearly always the one from the

network's closest server, ensuring geo-sensitive load-balancing. A short TTL on the A- record helps

to ensure traffic is quickly diverted when a server goes down. Consideration must be given the

possibility that this technique may cause individual clients to switch between individual servers in

mid-session.

Client-Side Random Load Balancing]

One more approach to load balancing is to deliver list of server IPs to the client, and then to have

client randomly select the IP from the list on each connection. This essentially relies on all clients

causing similar load, and the Law of Large Numbersto achieve reasonably flat load distribution

across servers. It has been claimed that client-side random load balancing tends to provide better

load distribution then round-robin DNS; this has been attributed to caching issues with round-robin

DNS, which in case of large DNS caching servers, tend to skew the distribution for round-robin

DNS, while client-side random selection remains unaffected regardless of DNS caching.

With this approach, the method of delivery of list of IPs to the client can vary, and may be implemented

as a DNS list (delivered to all the clients without any round-robin), or via hardcoding it to the list. If

"smart client" is used, detecting that randomly selected server is down, and connecting randomly

again, it also provides fault tolerance.

Server-side Load Balancers

For Internet services, server-side load balancer is usually a software program that is listening on

the port where external clients connect to access services. The load balancer forwards requests to

one of the "backend" servers, which usually replies to the load balancer. This allows the load

balancer to reply to the client without the client ever knowing about the internal separation of

functions. It also prevents clients from contacting back-end servers directly, which may have

security benefits by hiding the structure of the internal network and preventing attacks on the

kernel's network stack or unrelated services running on other ports.

Some load balancers provide a mechanism for doing something special in the event that all backend

servers are unavailable. This might include forwarding to a backup load balancer, or displaying a

message regarding the outage.

It is also important that the load balancer itself does not become a single point of failure. Usually

load balancers are implemented in high-availability pairs which may also replicate session

persistence data if required by the specific application.

Scheduling algorithms

Numerous scheduling algorithms are used by load balancers to determine which back-end server to

@ in a 192.0.2.1

@ in a 203.0.113.2

https://en.wikipedia.org/wiki/Time_to_live
https://en.wikipedia.org/wiki/Law_of_Large_Numbers
https://en.wikipedia.org/wiki/TCP_and_UDP_port
https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/High_availability
https://en.wikipedia.org/wiki/Scheduling_algorithm

CS8603:Distributed Systems Department of CSE

2020 – 2021 23 Jeppiaar Institute of Technology

times, up/down status (determined by a monitoring poll of some kind), number of active
connections, geographic location, capabilities, or how much traffic it has recently been assigned.

Persistence

An important issue when operating a load-balanced service is how to handle information that must

be kept across the multiple requests in a user's session. If this information is stored locally on one

backend server, then subsequent requests going to different backend servers would not be able to

find it. This might be cached information that can be recomputed, in which case load-balancing a

request to a different backend server just introduces a performance issue.

Ideally the cluster of servers behind the load balancer should be session-aware, so that if a client

connects to any backend server at any time the user experience is unaffected. This is usually

achieved with a shared database or an in-memory session database, for example Memcached.

One basic solution to the session data issue is to send all requests in a user session consistently to the

same backend server. This is known as persistence or stickiness. A significant downside to this

technique is its lack of automatic failover: if a backend server goes down, its per-session information

becomes inaccessible, and any sessions depending on it are lost. The same problem is usually relevant

to central database servers; even if web servers are "stateless" and not "sticky", the central database is

(see below).

Assignment to a particular server might be based on a username, client IP address, or be random.

Because of changes of the client's perceived address resulting from DHCP, network address

translation, and web proxies this method may be unreliable. Random assignments must be

remembered by the load balancer, which creates a burden on storage. If the load balancer is replaced

or fails, this information may be lost, and assignments may need to be deleted after a timeout period

or during periods of high load to avoid exceeding the space available for the assignment table. The

random assignment method also requires that clients maintain some state, which can be a problem,

for example when a web browser has disabled storage of cookies. Sophisticated load balancers use

multiple persistence techniques to avoid some of the shortcomings of any one method.

Another solution is to keep the per-session data in a database. Generally this is bad for performance

because it increases the load on the database: the database is best used to store information less

transient than per-session data. To prevent a database from becoming a single point of failure, and to

improve scalability, the database is often replicated across multiple machines, and load balancing is

used to spread the query load across those replicas. Microsoft's ASP.net State Server technology is an

example of a session database. All servers in a web farm store their session data on State Server and

any server in the farm can retrieve the data.

In the very common case where the client is a web browser, a simple but efficient approach is to store

the per-session data in the browser itself. One way to achieve this is to use a browser cookie, suitably

time-stamped and encrypted. Another isURL rewriting. Storing session data on the client is generally

the preferred solution: then the load balancer is free to pick any backend server to handle a request.

However, this method of state-data handling is poorly suited to some complex business logic

scenarios, where session state payload is big and recomputing it with every request on a server is not

feasible. URL rewriting has major security issues, because the end-user can easily alter the submitted

URL and thus change session streams.

Yet another solution to storing persistent data is to associate a name with each block of data, and use

a distributed hash table to pseudo-randomly assign that name to one of the available servers, and

then store that block of data in the assigned server.

https://en.wikipedia.org/wiki/Memcached
https://en.wikipedia.org/wiki/Failover
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/DHCP
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Web_proxy
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/ASP.net
https://en.wikipedia.org/wiki/HTTP_cookie
https://en.wikipedia.org/wiki/URL_rewriting
https://en.wikipedia.org/wiki/Distributed_hash_table

CS8603:Distributed Systems Department of CSE

2020 – 2021 24 Jeppiaar Institute of Technology

Load balancer features

Hardware and software load balancers may have a variety of special features. The fundamental

feature of a load balancer is to be able to distribute incoming requests over a number of backend

servers in the cluster according to a scheduling algorithm. Most of the following features are vendor

specific:

• Asymmetric load: A ratio can be manually assigned to cause some backend servers to get a

greater share of the workload than others. This is sometimes used as a crude way to account for

some servers having more capacity than others and may not always work as desired.

• Priority activation: When the number of available servers drops below a certain number, or load

gets too high, standby servers can be brought online.

• SSL Offload and Acceleration: Depending on the workload, processing the encryption and

authentication requirements of an SSL request can become a major part of the demand on the Web

Server's CPU; as the demand increases, users will see slower response times, as the SSL overhead

is distributed among Web servers. To remove this demand on Web servers, a balancer can

terminate SSL connections, passing HTTPS requests as HTTP requests to the Web servers. If the

balancer itself is not overloaded, this does not noticeably degrade the performance perceived by

end users. The downside of this approach is that all of the SSL processing is concentrated on a

single device (the balancer) which can become a new bottleneck. Some load balancer appliances

include specialized hardware to process SSL. Instead of upgrading the load balancer, which is

quite expensive dedicated hardware, it may be cheaper to forgo SSL offload and add a few Web

servers. Also, some server vendors such as Oracle/Sun now incorporate cryptographic

acceleration hardware into their CPUs such as the T2000. F5 Networks incorporates a dedicated

SSL acceleration hardware card in their local traffic manager (LTM) which is used for encrypting

and decrypting SSL traffic. One clear benefit to SSL offloading in the balancer is that it enables

it to do balancing or content switching based on data in the HTTPS request.

• Distributed Denial of Service (DDoS) attack protection: load balancers can provide features

such as SYN cookies and delayed-binding (the back-end servers don't see the client until it

finishes its TCP handshake) to mitigate SYN floodattacks and generally offload work from the

servers to a more efficient platform.

• HTTP compression: reduces amount of data to be transferred for HTTP objects by utilizing gzip

compression available in all modern web browsers. The larger the response and the further away

the client is, the more this feature can improve response times. The tradeoff is that this feature

puts additional CPU demand on the Load Balancer and could be done by Web servers instead.

• TCP offload: different vendors use different terms for this, but the idea is that normally each

HTTP request from each client is a different TCP connection. This feature utilizes HTTP/1.1 to

consolidate multiple HTTP requests from multiple clients into a single TCP socket to the back-

end servers.

• TCP buffering: the load balancer can buffer responses from the server and spoon-feed the data

out to slow clients, allowing the web server to free a thread for other tasks faster than it would if

it had to send the entire request to the client directly.

• Direct Server Return: an option for asymmetrical load distribution, where request and reply

have different network paths.

• Health checking: the balancer polls servers for application layer health and removes failed

servers from the pool.

• HTTP caching: the balancer stores static content so that some requests can be handled without

https://en.wikipedia.org/wiki/SSL_Acceleration
https://en.wikipedia.org/wiki/Secure_Sockets_Layer
https://en.wikipedia.org/wiki/Distributed_denial_of_service
https://en.wikipedia.org/wiki/SYN_cookies
https://en.wikipedia.org/wiki/SYN_flood
https://en.wikipedia.org/wiki/HTTP_compression
https://en.wikipedia.org/wiki/HTTP_caching

CS8603:Distributed Systems Department of CSE

2020 – 2021 26 Jeppiaar Institute of Technology

• HTTP security: some balancers can hide HTTP error pages, remove server identification headers
from HTTP responses, and encrypt cookies so that end users cannot manipulate them.

• Priority queuing: also known as rate shaping, the ability to give different priority to different

traffic.

• Content-aware switching: most load balancers can send requests to different servers based on

the URL being requested, assuming the request is not encrypted (HTTP) or if it is encrypted (via

HTTPS) that the HTTPS request is terminated (decrypted) at the load balancer.

• Client authentication: authenticate users against a variety of authentication sources before

allowing them access to a website.

• Programmatic traffic manipulation: at least one balancer allows the use of a scripting language

to allow custom balancing methods, arbitrary traffic manipulations, and more.

• Firewall: direct connections to backend servers are prevented, for network security reasons

Firewall is a set of rules that decide whether the traffic may pass through an interface or not.

• Intrusion prevention system: offer application layer security in addition to network/transport

layer offered by firewall security.

Sharing annotations

Munin implements a variety of consistency protocols, which are applied at the granularity of

individual data items. The protocols are parameterized according to the following options:

• whether to use a write-update or write-invalidate protocol;

• whether several replicas of a modifiable data item may exist simultaneously;

• whether or not to delay updates or invalidations (for example, under release consistency);

• whether the item has a fixed owner, to which all updates must be sent;

• whether the same data item may be modified concurrently by several writers;

• whether the data item is shared by a fixed set of processes;

• whether the data item may be modified.

Read-only: No updates may be made after initialization and the item may be freely copied.

Migratory: Processes typically take turns in making several accesses to the item, at least one of

which is an update. For example, the item might be accessed within a critical section. Munin

always gives both read and write access together to such an object, even when a process takes a

read fault. This saves subsequent write-fault processing.

Write-shared: Several processes update the same data item (for example, an array) concurrently,

but this annotation is a declaration from the programmer that the processes do not update the same

parts of it. This means that Munin can avoid false sharing but must propagate only those words in

https://en.wikipedia.org/wiki/Priority_queuing
https://en.wikipedia.org/wiki/Rate_shaping
https://en.wikipedia.org/wiki/Firewall_(networking)
https://en.wikipedia.org/wiki/Intrusion_prevention_system

CS8603:Distributed Systems Department of CSE

2020 – 2021 29 Jeppiaar Institute of Technology

Producer-consumer: The data object is shared by a fixed set of processes, only one of which

updates it. As we explained when discussing thrashing above, a writeupdate protocol is most

suitable here. Moreover, updates may be delayed under the model of release consistency, assuming

that the processes use locks to synchronize their accesses.

Reduction: The data item is always modified by being locked, read, updated and unlocked. An

example of this is a global minimum in a parallel computation, which must be fetched and modified

atomically if it is greater than the local minimum. These items are stored at a fixed owner. Updates

are sent to the owner, which propagates them.

Result: Several processes update different words within the data item; a single process reads the

whole item. For example, different ‘worker’ processes might fill in different elements of an array,

which is then processed by a ‘master’ process. The point here is that the updates need only be

propagated to the master and not to the workers (as would occur under the ‘write-shared’

annotation just described).

Conventional: The data item is managed under an invalidation protocol similar to that described

in the previous section. No process may therefore read a stale version of the data item.

OTHER CONSISTENCY MODELS

Models of memory consistency can be divided into uniform models, which do not distinguish

between types of memory access, and hybrid models, which do distinguish between ordinary and

synchronization accesses (as well as other types of access).

Other uniform consistency models include:

Causal consistency: Reads and writes may be related by the happened-before relationship . This is

defined to hold between memory operations when either (a) they are made by the same process;

(b) a process reads a value written by another process; or (c) there exists a sequence of such

operations linking the two operations. The model’s constraint is that the value returned by a read

must be consistent with the happened-before relationship.

Processor consistency: The memory is both coherent and adheres to the pipelined RAM model

(see below). The simplest way to think of processor consistency is that the memory is coherent

and that all processes agree on the ordering of any two write accesses made by the same process

– that is, they agree with its program order.

CS8603:Distributed Systems Department of CSE

2020 – 2021 30 Jeppiaar Institute of Technology

Pipelined RAM: All processors agree on the order of writes issued by any given processor In

addition to release consistency, hybrid models include:

Entry consistency: Entry consistency was proposed for the Midway DSM system. In this model,

every shared variable is bound to a synchronization object such as a lock, which governs access to

that variable. Any process that first acquires the lock is guaranteed to read the latest value of the

variable. A process wishing to write the variable must first obtain the corresponding lock in

‘exclusive’ mode – making it the only process able to access the variable.

Several processes may read the variable concurrently by holding the lock in nonexclusive mode.

Midway avoids the tendency to false sharing in release consistency, but at the expense of increased

programming complexity.

Scope consistency: This memory model [Iftode et al. 1996] attempts to simplify the programming

model of entry consistency. In scope consistency, variables are associated with synchronization

objects largely automatically instead of relying on the programmer to associate locks with variables

explicitly. For example, the system can monitor which variables are updated in a critical section.

Weak consistency: Weak consistency [Dubois et al. 1988] does not distinguish between acquire

and release synchronization accesses. One of its guarantees is that all previous ordinary accesses

complete before either type of synchronization access completes.

Common Object Request Broker Architecture (CORBA)

CORBA is a middeware design that allows application programs to communicate with one

another irrespective of their programming languages, their hardware and software platforms, the

networks they communicate over and their implementors.

Applications are built from CORBA objects, which implement interfaces defined in

CORBA’s interface definition language, IDL. Clients access the methods in the IDL interfaces of

CORBA objects by means of RMI. The middleware component that supports RMI is called the

Object Request Broker or ORB.

Introduction

The OMG (Object Management Group) was formed in 1989 with a view to encouraging the

adoption of distributed object systems in order to gain the benefits of object-oriented

CS8603:Distributed Systems Department of CSE

2020 – 2021 31 Jeppiaar Institute of Technology

programming for software development and to make use of distributed systems, which were

becoming widespread. To achieve its aims, the OMG advocated the use of open systems based on

standard object-oriented interfaces. These systems would be built from heterogeneous hardware,

computer networks, operating systems and programming languages.

An important motivation was to allow distributed objects to be implemented in any programming

language and to be able to communicate with one another. They therefore designed an interface

language that was independent of any specific implementation language.

They introduced a metaphor, the object request broker(or ORB), whose role is to help a client to

invoke a method on an object. This role involves locating the object, activating the object if

necessary and then communicating the client’s request to the object, which carries it out and

replies.

In 1991, a specification for an object request broker architecture known as CORBA (Common

Object Request Broker Architecture) was agreed by a group of companies. This was followed in

1996 by the CORBA 2.0 specification, which defined standards enabling implementations made

by different developers to communicate with one another. These standards are called the General

Inter-ORB protocol or GIOP. It is intended that GIOP can be implemented over any transport layer

with connections. The implementation of GIOP for the Internet uses the TCP protocol and is

called the Internet Inter-ORB Protocol or IIOP [OMG 2004a]. CORBA 3 first appeared in late

1999 and a component model has been added recently.

The main components of CORBA’s language-independent RMI framework are the following:

• An interface definition language known as IDL,

• The GIOP defines an external data representation, called CDR. It also defines specific

formats for the messages in a request-reply protocol. In addition to request and reply

messages, it specifies messages for enquiring about the location of an object, for cancelling

requests and for reporting errors.

• The IIOP, an implementation of GIOP defines a standard form for remote object

references,

CORBA RMI

Programming in a multi-language RMI system such as CORBA RMI requires more of the

programmer than programming in a single-language RMI system such as Java RMI.

CS8603:Distributed Systems Department of CSE

2020 – 2021 33 Jeppiaar Institute of Technology

• the object model offered by CORBA;

• the interface definition language and its mapping onto the implementation language.

CORBA's object model

The CORBA object model is similar to the one described in , but clients are not necessarily objects

– a client can be any program that sends request messages to remote objects and receives replies.

The term CORBA object is used to refer to remote objects. Thus, a CORBA object implements an

IDL interface, has a remote object reference and is able to respond to invocations of methods in its

IDL interface. A CORBA object can be implemented by a language that is not objectoriented, for

example without the concept of class. Since implementation languages will have different notions

of class or even none at all, the class concept does not exist in CORBA. Therefore classes cannot

be defined in CORBA IDL, which means that instances of classes cannot be passed as arguments.

CORBA IDL

These are preceded by definitions of two structs, which are used as parameter types in defining the

methods. Note in particular that GraphicalObject is defined as a struct , whereas it was a class in

the Java RMI example. A component whose type is a struct has a set of fields containing values of

various types like the instance variables of an object, but it has no methods.

Parameters and results in CORBA IDL:

Each parameter is marked as being for input or output or both, using the keywords in , out or

inout illustrates a simple example of the use of those keywords

CS8603:Distributed Systems Department of CSE

2020 – 2021 34 Jeppiaar Institute of Technology

The semantics of parameter passing are as follows:

Passing CORBA objects:

Any parameter whose type is specified by the name of an IDL interface, such as the return value

Shape in line 7, is a reference to a CORBA object and the value of a remote object reference is

passed.

Passing CORBA primitive and constructed types:

Arguments of primitive and constructed types are copied and passed by value. On arrival, a new

value is created in the recipient’s process. For example, the struct GraphicalObject passed as

argument (in line 7) produces a new copy of this struct at the server.

Type Object :

Object is the name of a type whose values are remote object references. It is effectively a

CS8603:Distributed Systems Department of CSE

2020 – 2021 36 Jeppiaar Institute of Technology

Exceptions in CORBA IDL:

CORBA IDL allows exceptions to be defined in interfaces and thrown by their methods. To

illustrate this point, we have defined our list of shapes in the server as a sequence of a fixed length

(line 4) and have defined FullException (line 6), which is thrown by the method newShape (line

7) if the client attempts to add a shape when the sequence is full.

Invocation semantics:

Remote invocation in CORBA has at-most-once call semantics as the default. However, IDL

may specify that the invocation of a particular method has maybe semantics by using the oneway

keyword. The client does not block on oneway requests, which can be used only for methods

without results.

The CORBA Naming service

It is a binder that provides operations including rebind for servers to register the remote object

references of CORBA objects by name and resolve for clients to look them up by name. The names

are structured in a hierarchic fashion, and each name in a path is inside a structure called a

NameComponent . This makes access in a simple example seem rather complex.

CORBA pseudo objects

Implementations of CORBA provide interfaces to the functionality of the ORB that programmers

need to use. In particular, they include interfaces to two of the components in the ORB core and

the Object Adaptor

CORBA client and server example

This is followed by a discussion of callbacks in CORBA. We use Java as the client and server

languages, but the approach is similar for other languages. The interface compiler idlj can be

applied to the CORBA interfaces to generate the following items:

CS8603:Distributed Systems Department of CSE

2020 – 2021 37 Jeppiaar Institute of Technology

.

• The equivalent Java interfaces – two per IDL interface. The name of the first Java interface

ends in Operations – this interface just defines the operations in the IDL interface. The Java

second interface has the same name as the IDL interface and implements the operations in

the first interface as well as those in an interface suitable for a CORBA object.

• The server skeletons for each idl interface. The names of skeleton classes end in POA , for

example ShapeListPOA.

• The proxy classes or client stubs, one for each IDL interface. The names of these classes

end in Stub , for example _ShapeListStub\

• A Java class to correspond to each of the structs defined with the IDL interfaces. In our

example, classes Rectangle and GraphicalObject are generated. Each of these classes

contains a declaration of one instance variable for each field in the corresponding struct

and a pair of constructors, but no other methods.

• Classes called helpers and holders, one for each of the types defined in the IDL interface.

A helper class contains the narrow method, which is used to cast down from a given object

reference to the class to which it belongs, which is lower down the class hierarchy. For

example, the narrow method in ShapeHelper casts down to class Shape . The holder classes

deal with out and inout arguments, which cannot be mapped directly onto Java.

Server program

The server program should contain implementations of one or more IDL interfaces. For a server

written in an object-oriented language such as Java or C++, these implementations are

implemented as servant classes. CORBA objects are instances of servant classes.

CS8603:Distributed Systems Department of CSE

2020 – 2021 38 Jeppiaar Institute of Technology

When a server creates an instance of a servant class, it must register it with the POA, which makes

the instance into a CORBA object and gives it a remote object reference. Unless this is done, the

CORBA object will not be able to receive remote invocations. Readers who studied Chapter 5

carefully may realize that registering the object with the POA causes it to be recorded in the

CORBA equivalent of the remote object table.

CS8603:Distributed Systems Department of CSE

2020 – 2021 39 Jeppiaar Institute of Technology

The client program

It creates and initializes an ORB (line 1), then contacts the Naming Service to get a reference to

the remote ShapeList object by using its resolve method (line 2). After that it invokes its method

allShapes (line 3) to obtain a sequence of remote object references to all the Shapes currently

held at the server. It then invokes the getAllState method (line 4), giving as argument the first

remote object reference in the sequence returned; the result is supplied as an instance of the

GraphicalObject class.

CS8603:Distributed Systems Department of CSE

2020 – 2021 40 Jeppiaar Institute of Technology

Callbacks

Callbacks can be implemented in CORBA in a manner similar to the one described for Java RMI

For example, the WhiteboardCallback interface may be defined as follows:

interface WhiteboardCallback {

oneway void callback(in int version);

};

This interface is implemented as a CORBA object by the client, enabling the server to send the

client a version number whenever new objects are added. But before the server can do this, the

client needs to inform the server of the remote object reference of its object. To make this possible,

the ShapeList interface requires additional methods such as register and deregister, as follows:

int register(in WhiteboardCallback callback);

void deregister(in int callbackId);

After a client has obtained a reference to the ShapeList object and created an instance of

WhiteboardCallback, it uses the register method of ShapeList to inform the server that it is

interested in receiving callbacks. The ShapeList object in the server is responsible for keeping a

list of interested clients and notifying all of them each time its version number increases when a

new object is added.

CS8603:Distributed Systems Department of CSE

2020 – 2021 41 Jeppiaar Institute of Technology

The architecture of CORBA

The architecture is designed to support the role of an object request broker that enables clients to

invoke methods in remote objects, where both clients and servers can be implemented in a

variety of programming languages. The main components of the CORBA architecture are

illustrated in Figure

CORBA provides for both static and dynamic invocations. Static invocations are used when the

remote interface of the CORBA object is known at compile time, enabling client stubs and server

skeletons to be used. If the remote interface is not known at compile time, dynamic invocation

must be used. Most programmers prefer to use static invocation because it provides a more natural

programming model.

ORB core ◊ The role of the ORB core is similar to that of the communication module . In addition,

an ORB core provides an interface that includes the following:

• operations enabling it to be started and stopped;

• operations to convert between remote object references and strings;

• operations to provide argument lists for requests using dynamic invocation.

Object adapter

The role of an object adapter is to bridge the gap between CORBA objects with IDL interfaces

and the programming language interfaces of the corresponding servant classes. This role also

includes that of the remote reference and dispatcher modules. An object adapter has the following

tasks:

CS8603:Distributed Systems Department of CSE

2020 – 2021 42 Jeppiaar Institute of Technology

• it creates remote object references for CORBA objects;

• it dispatches each RMI via a skeleton to the appropriate servant;

• it activates and deactivates servants.

An object adapter gives each CORBA object a unique object name, which forms part of its remote

object reference. The same name is used each time an object is activated. The object name may

be specified by the application program or generated by the object adapter. Each CORBA object

is registered with its object adapter, which may keep a remote object table that maps the names of

CORBA objects to their servants.

Portable object adapter

The CORBA 2.2 standard for object adapters is called the Portable Object Adapter. It is called

portable because it allows applications and servants to be run on ORBs produced by different

developers [Vinoski 1998]. This is achieved by means of the standardization of the skeleton

classes and of the interactions between the POA and the servants. The POA supports CORBA

objects with two different sorts of lifetimes:

• those whose lifetimes are restricted to that of the process their servants are instantiated in;

• those whose lifetimes can span the instantiations of servants in multiple processes.

Skeletons

Skeleton classes are generated in the language of the server by an IDL compiler. As before, remote

method invocations are dispatched via the appropriate skeleton to a particular servant, and the

skeleton unmarshals the arguments in request messages and marshals exceptions and results in

reply messages.

Client stubs/proxies

These are in the client language. The class of a proxy (for object oriented languages) or a set of

stub procedures (for procedural languages) is generated from an IDL interface by an IDL compiler

for the client language. As before, the client stubs/proxies marshal the arguments in invocation

requests and unmarshal exceptions and results in replies.

Implementation repository

• An implementation repository is responsible for activating registered servers on demand

and for locating servers that are currently running. The object adapter name is used to refer

to servers when registering and activating them.

• An implementation repository stores a mapping from the names of object adapters to the

CS8603:Distributed Systems Department of CSE

2020 – 2021 44 Jeppiaar Institute of Technology

• Object implementations and object adapter names are generally registered with the

implementation repository when server programs are installed.

• When object implementations are activated in servers, the hostname and port number of

the server are added to the mapping.

Interface repository

The role of the interface repository is to provide information about registered IDL interfaces to

clients and servers that require it. For an interface of a given type it can supply the names of the

methods and for each method, the names and types of the arguments and exceptions. Thus, the

interface repository adds a facility for reflection to CORBA

Dynamic invocation interface

The dynamic invocation interface allows clients to make dynamic invocations on remote CORBA

objects. It is used when it is not practical to employ proxies. The client can obtain from the interface

repository the necessary information about the methods available for a given CORBA object. The

client may use this information to construct an invocation with suitable arguments and send it to

the server.

Dynamic skeletons

If a server uses dynamic skeletons, then it can accept invocations on the interface of a CORBA

object for which it has no skeleton. When a dynamic skeleton receives an invocation, it inspects

the contents of the request to discover its target object, the method to be invoked and the arguments.

It then invokes the target.

Legacy code

The term legacy code refers to existing code that was not designed with distributed objects in mind.

A piece of legacy code may be made into a CORBA object by defining an IDL interface for it

and providing an implementation of an appropriate object adapter and the necessary skeletons.

CORBA Interface Definition Language

The CORBA Interface Definition Language, IDL, provides facilities for defining modules,

interfaces, types, attributes and method signatures. IDL has the same lexical rules as C++ but has

additional keywords to support distribution, for example interface, any, attribute, in, out, inout,

readonly, raises. It also allows standard C++ preprocessing facilities.

CS8603:Distributed Systems Department of CSE

2020 – 2021 45 Jeppiaar Institute of Technology

IDL Modules

The module construct allows interfaces and other IDL type definitions to be grouped in logical

units. A module defines a naming scope, which prevents names defined within a module clashing

with names defined outside it.

IDL interface

An IDL interface describes the methods that are available in CORBA objects that implement that

interface. Clients of a CORBA object may be developed just from the knowledge of its IDL

interface.

IDL methods

The general form of a method signature is:

[oneway] <return_type> <method_name> (parameter1,..., parameterL)

[raises (except1,..., exceptN)] [context (name1,..., nameM)]

where the expressions in square brackets are optional. For an example of a method signature that

contains only the required parts, consider:

void getPerson(in string name, out Person p);

IDL types

IDL supports fifteen primitive types, which include short (16-bit), long (32- bit), unsigned short,

unsigned long, float (32-bit), double (64-bit), char, Boolean (TRUE, FALSE), octet (8-bit), and

any (which can represent any primitive or constructed type).

CS8603:Distributed Systems Department of CSE

2020 – 2021 46 Jeppiaar Institute of Technology

Attributes

IDL interfaces can have attributes as well as methods. Attributes are like public class fields in Java.

Attributes may be defined as readonly where appropriate. The attributes are private to CORBA

objects, but for each attribute declared, a pair of accessor methods is generated automatically by

the IDL compiler, one to retrieve the value of the attribute and the other to set it. For readonly

attributes, only the getter method is provided. For example, the PersonList interface defined in

Figure 5.2 includes the following definition of an attribute: readonly attribute string listname;

Inheritance

IDL interfaces may be extended. For example, if interface B extends interface A, this means that

it may add new types, constants, exceptions, methods and attributes to those of A. An extended

interface can redefine types, constants and exceptions, but is not allowed to redefine methods. A

value of an extended type is valid as the value of a parameter or result of the parent type. For

example, the type B is valid as the value of a parameter or result of the type A.

interface A { };

interface B: A{ };

interface C {};

interface Z : B, C {};

CS8603:Distributed Systems Department of CSE

2020 – 2021 47 Jeppiaar Institute of Technology

CORBA SERVICES

CORBA includes specifications for services that may be required by distributed objects. In

particular, the Naming Service is an essential addition to any ORB. The CORBA services include

the following:

• Naming Service:

• Event Service and Notification Service:

• Security service:

• Trading service:

In contrast to the Naming Service which allows CORBA objects to be located by name, the

Trading Service [OMG 2000a] allows them to be located by attribute – that is, it is a directory

service. Its database contains a mapping from service types and their associated attributes onto

remote object references of CORBA objects. The service type is a name, and each attribute is a

name-value pair. Clients make queries by specifying the type of service required, together with

other arguments specifying constraints on the values of attributes, and preferences for the order in

which to receive matching offers. Trading servers can form federations in which they not only use

their own databases but also perform queries on behalf of one anothers’ clients.

• Transaction service and concurrency control service:

The object transaction service [OMG 2003] allows distributed CORBA objects to participate in

either flat or nested transactions. The client specifies a transaction as a sequence of RMI calls,

which are introduced by begin and terminated by commit or rollback (abort). The ORB attaches

a transaction identifier to each remote invocation and deals with begin, commit and rollback

requests. Clients can also suspend and resume transactions. The transaction service carries out a

two-phase commit protocol. The concurrency control service [OMG 2000b] uses locks to apply

concurrency control to the access of CORBA objects. It may be used from within transactions or

independently.

• Persistent state service:

An persistent objects can be implemented by storing them in a passive form in a persistent object

store while they are not in use and activating them when they are needed. Although ORBs activate

CS8603:Distributed Systems Department of CSE

2020 – 2021 49 Jeppiaar Institute of Technology

implementation repository, they are not responsible for saving and restoring the state of CORBA

objects.

• Life cycle service

The life cycle service defines conventions for creating, deleting, copying and moving CORBA

objects. It specifies how clients can use factories to create objects in particular locations, allowing

persistent storage to be used if required. It defines an interface that allows clients to delete CORBA

objects or to move or copy them to a specified location.

CORBA Naming Service

The CORBA Naming Service is a sophisticated example of the binder described in Chapter 5. It

allows names to be bound to the remote object references of CORBA objects within naming

contexts.

a naming context is the scope within which a set of names applies – each of the names within a

context must be unique. A name can be associated with either an object reference for a CORBA

object in an application or with another context in the naming service.

The names used by the CORBA Naming Service are two-part names, called Name Components,

each of which consists of two strings, one for the name and the other for the kind of the object.

The kind field provides a single attribute that is intended for use by applications and may contain

any useful descriptive information; it is not interpreted by the Naming Service.

Although CORBA objects are given hierarchic names by the Naming Service, these names cannot

be expressed as pathnames like those of UNIX files.

CS8603:Distributed Systems Department of CSE

2020 – 2021 50 Jeppiaar Institute of Technology

CORBA Event Service

The CORBA Event Service specification defines interfaces allowing objects of interest, called

suppliers, to communicate notifications to subscribers, called consumers. The notifications are

communicated as arguments or results of ordinary synchronous CORBA remote method

invocations. Notifications may be propagated either by being pushed by the supplier to the

consumer or pulled by the consumer from the supplier. In the first case, the consumers implement

the PushConsumer interface which includes a method push that takes any CORBA data type as

argument. Consumers register their remote object references with the suppliers. The supplier

invokes the push method, passing a notification as argument. In the second case, the supplier

implements the PullSupplier interface, which includes a method pull that receives any CORBA

data type as its return value. Suppliers register their remote object references with the consumers.

The consumers invoke the pull method and receive a notification as result.

The notification itself is transmitted as an argument or result whose type is any, which

means that the objects exchanging notifications must have an agreement about the contents of

notifications. Application programmers, however, may define their own IDL interfaces with

notifications of any desired type.

Event channels are CORBA objects that may be used to allow multiple suppliers to

CS8603:Distributed Systems Department of CSE

2020 – 2021 52 Jeppiaar Institute of Technology

buffer between suppliers and consumers. It can also multicast the notifications to the consumers.

Communication via an event channel may use either the push or pull style. The two styles may

be mixed; for example, suppliers may push notifications to the channel and consumers may pull

notifications from it.

CORBA Notification Service

The CORBA Notification Service extends the CORBA Event Service, retaining all of its features

including event channels, event consumers and event suppliers. The event service provides no

support for filtering events or for specifying delivery requirements. Without the use of filters, all

the consumers attached to a channel have to receive the same notifications as one another. And

without the ability to specify delivery requirements, all of the notifications sent via a channel are

given the delivery guarantees built into the implementation.

The notification service adds the following new facilities:

• Notifications may be defined as data structures. This is an enhancement of the limited

utility provided by notifications in the event service, whose type could only be either any

or a type specified by the application programmer.

• Event consumers may use filters that specify exactly which events they are interested in.

The filters may be attached to the proxies in a channel. The proxies will forward

notifications to event consumers according to constraints specified in filters in terms of the

contents of each notification.

• Event suppliers are provided with a means of discovering the events the consumers are

interested in. This allows them to generate only those events that are required by the

consumers.

• Event consumers can discover the event types offered by the suppliers on a channel, which

enables them to subscribe to new events as they become available.

CS8603:Distributed Systems Department of CSE

2020 – 2021 53 Jeppiaar Institute of Technology

• It is possible to configure the properties of a channel, a proxy or a particular event. These

properties include the reliability of event delivery, the priority of events, the ordering

required (for example, FIFO or by priority) and the policy for discarding stored events.

• An event type repository is an optional extra. It will provide access to the structure of

events, making it convenient to define filtering constraints.

A structured event consists of an event header and an event body. The following example

illustrates the contents of the header:

The following example illustrates the information in the body of a structured event:

Filter objects are used by proxies in making decisions as to whether to forward each notification.

A filter is designed as a collection of constraints, each of which is a data structure with two

components:

• A list of data structures, each of which indicates an event type in terms of its domain

name and event type, for example, "home", "burglar alarm". The list includes all of the

event types to which the constraint should apply.

• A string containing a boolean expression involving the values of the event types listed

above. For example:

("domain type" == "home" && "event type" == "burglar alarm") &&

("bell" != "ringing" !! "door" == "open")

CORBA Security Service

The CORBA Security Service [Blakley 1999, Baker 1997, OMG 2002b] includes the following:

• Authentication of principals (users and servers); generating credentials for principals (that

is, certificates stating their rights); delegation of credentials is supported

CS8603:Distributed Systems Department of CSE

2020 – 2021 54 Jeppiaar Institute of Technology

• Access control can be applied to CORBA objects when they receive remote method

invocations. Access rights may for example be specified in access control lists (ACLs).

• Security of communication between clients and objects, protecting messages for integrity

and confidentiality.

• Auditing by servers of remote method invocations.

• Facilities for non-repudiation. When an object carries out a remote invocation on behalf

of a principal, the server creates and stores credentials that prove that the invocation was

done by that server on behalf of the requesting principal.

CORBA allows a variety of security policies to be specified according to requirements. A

message-protection policy states whether client or server (or both) must be authenticated, and

whether messages must be protected against disclosure and/or modification.

Access control takes into account that many applications have large numbers of users and even

larger numbers of objects, each with its own set of methods. Users are supplied with a special type

of credential called a privilege according to their roles.

Objects are grouped into domains. Each domain has a single access control policy specifying

the access rights for users with particular privileges to objects within that domain. To allow for the

unpredictable variety of methods, each method is classified in terms of one of four generic methods

(get, set, use and manage). Get methods just return parts of the object state, set methods alter the

object state, use methods cause the object to do some work, and manage methods perform special

functions that are not intended to be available for general use. Since CORBA objects have a variety

of different interfaces, the access rights must be specified for each new interface in terms of the

above generic methods.

In its simplest form, security may be applied in a manner that is transparent to applications. It

includes applying the required protection policy to remote method invocations, together with

auditing. The security service allows users to acquire their individual credentials and privileges

in return for supplying authentication data such as a password.

