
CS8691 –ARTIFICIAL INTELLIGENCE
 VI SEMESTER CSE

2017 Regulations

UNIT-II

(2) SEARCHING TECHNIQUES
UNIT II PROBLEM SOLVING METHODS 9

Problem solving Methods - Search Strategies- Uninformed - Informed - Heuristics -

Local Search Algorithms and Optimization Problems - Searching with Partial

Observations – Constraint Satisfaction Problems – Constraint Propagation -

Backtracking Search - Game Playing – Optimal Decisions in Games – Alpha - Beta

Pruning - Stochastic Games

2.0 Problem Solving by Search
An important aspect of intelligence is goal-based problem solving.

The solution of many problems can be described by finding a sequence of actions that lead to a

desirable goal. Each action changes the state and the aim is to find the sequence of actions and

states that lead from the initial (start) state to a final (goal) state.

A well-defined problem can be described by:

 Initial state
 Operator or successor function - for any state x returns s(x), the set of states reachable

from x with one action

 State space - all states reachable from initial by any sequence of actions

 Path - sequence through state space

 Path cost - function that assigns a cost to a path. Cost of a path is the sum of costs of

individual actions along the path

 Goal test - test to determine if at goal state

What is Search?
Search is the systematic examination of states to find path from the start/root state to the goal

state.

The set of possible states, together with operators defining their connectivity constitute the search

space.

The output of a search algorithm is a solution, that is, a path from the initial state to a state that

satisfies the goal test.

Problem-solving agents

 A Problem solving agent is a goal-based agent . It decide what to do by finding sequence of

actions that lead to desirable states. The agent can adopt a goal and aim at satisfying it.

To illustrate the agent’s behavior ,let us take an example where our agent is in the city of

Arad,which is in Romania. The agent has to adopt a goal of getting to Bucharest.

Goal formulation,based on the current situation and the agent’s performance measure,is the first

step in problem solving.

The agent’s task is to find out which sequence of actions will get to a goal state.

Problem formulation is the process of deciding what actions and states to consider given a goal.

Example: Route finding problem
Referring to figure 1.19
 On holiday in Romania : currently in Arad.

 Flight leaves tomorrow from Bucharest

 Formulate goal: be in Bucharest

Formulate problem:

 states: various cities

 actions: drive between cities

Find solution:

sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Problem formulation
A problem is defined by four items:

initial state e.g., “at Arad"

successor function S(x) = set of action-state pairs

e.g., S(Arad) = {[Arad -> Zerind;Zerind],….}

goal test, can be

explicit, e.g., x = at Bucharest"

implicit, e.g., NoDirt(x)

path cost (additive)

e.g., sum of distances, number of actions executed, etc.

c(x; a; y) is the step cost, assumed to be >= 0

A solution is a sequence of actions leading from the initial state to a goal state.

Figure 1.17 Goal formulation and problem formulation

Search
 An agent with several immediate options of unknown value can decide what to do by examining

different possible sequences of actions that leads to the states of known value,and then choosing the

best sequence. The process of looking for sequences actions from the current state to reach the goal

state is called search.

The search algorithm takes a problem as input and returns a solution in the form of action

sequence. Once a solution is found,the execution phase consists of carrying out the recommended

action..

Figure 1.18 shows a simple “formulate,search,execute” design for the agent. Once solution has been

executed,the agent will formulate a new goal.

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action

inputs : percept, a percept

static: seq, an action sequence, initially empty

 state, some description of the current world state

 goal, a goal, initially null

 problem, a problem formulation

state UPDATE-STATE(state, percept)

if seq is empty then do

 goal FORMULATE-GOAL(state)

 problem FORMULATE-PROBLEM(state, goal)

 seq SEARCH(problem)

action FIRST(seq);

 seq REST(seq)

return action

Figure 1.18 A Simple problem solving agent. It first formulates a goal and a

problem,searches for a sequence of actions that would solve a problem,and executes the actions

one at a time.

 The agent design assumes the Environment is

• Static : The entire process carried out without paying attention to changes that

might be occurring in the environment.

• Observable : The initial state is known and the agent’s sensor detects all aspects that

are relevant to the choice of action

• Discrete : With respect to the state of the environment and percepts and actions so

that alternate courses of action can be taken

• Deterministic : The next state of the environment is completely determined by the

current state and the actions executed by the agent. Solutions to the problem are

single sequence of actions

An agent carries out its plan with eye closed. This is called an open loop system because ignoring

the percepts breaks the loop between the agent and the environment.

2.0.1 Well-defined problems and solutions

 A problem can be formally defined by four components:

 The initial state that the agent starts in . The initial state for our agent of example problem is

described by In(Arad)

 A Successor Function returns the possible actions available to the agent. Given a state

x,SUCCESSOR-FN(x) returns a set of {action,successor} ordered pairs where each action is

one of the legal actions in state x,and each successor is a state that can be reached from x by

applying the action.

For example,from the state In(Arad),the successor function for the Romania problem would

return

{ [Go(Sibiu),In(Sibiu)],[Go(Timisoara),In(Timisoara)],[Go(Zerind),In(Zerind)] }

 State Space : The set of all states reachable from the initial state. The state space forms a

graph in which the nodes are states and the arcs between nodes are actions.

 A path in the state space is a sequence of states connected by a sequence of actions.

 Thr goal test determines whether the given state is a goal state.

 A path cost function assigns numeric cost to each action. For the Romania problem the cost

of path might be its length in kilometers.

 The step cost of taking action a to go from state x to state y is denoted by c(x,a,y). The step

cost for Romania are shown in figure 1.18. It is assumed that the step costs are non negative.

 A solution to the problem is a path from the initial state to a goal state.

 An optimal solution has the lowest path cost among all solutions.

Figure 1.19 A simplified Road Map of part of Romania

2.0.2 EXAMPLE PROBLEMS
The problem solving approach has been applied to a vast array of task environments. Some

best known problems are summarized below. They are distinguished as toy or real-world

problems

A toy problem is intended to illustrate various problem solving methods. It can be easily

used by different researchers to compare the performance of algorithms.

A real world problem is one whose solutions people actually care about.

2.0.2.1 TOY PROBLEMS

Vacuum World Example

o States: The agent is in one of two locations.,each of which might or might not contain dirt.

Thus there are 2 x 22 = 8 possible world states.

o Initial state: Any state can be designated as initial state.

o Successor function : This generates the legal states that results from trying the three actions

(left, right, suck). The complete state space is shown in figure 2.3

o Goal Test : This tests whether all the squares are clean.

o Path test : Each step costs one ,so that the the path cost is the number of steps in the path.

Vacuum World State Space

Figure 1.20 The state space for the vacuum world.

 Arcs denote actions: L = Left,R = Right,S = Suck

 The 8-puzzle
An 8-puzzle consists of a 3x3 board with eight numbered tiles and a blank space. A tile adjacent to

the balank space can slide into the space. The object is to reach the goal state ,as shown in figure 2.4

Example: The 8-puzzle

Figure 1.21 A typical instance of 8-puzzle.

The problem formulation is as follows :

o States : A state description specifies the location of each of the eight tiles and the blank in

one of the nine squares.

o Initial state : Any state can be designated as the initial state. It can be noted that any given

goal can be reached from exactly half of the possible initial states.

o Successor function : This generates the legal states that result from trying the four

actions(blank moves Left,Right,Up or down).

o Goal Test : This checks whether the state matches the goal configuration shown in figure

2.4.(Other goal configurations are possible)

o Path cost : Each step costs 1,so the path cost is the number of steps in the path.

o

The 8-puzzle belongs to the family of sliding-block puzzles,which are often used as test

problems for new search algorithms in AI. This general class is known as NP-complete.

The 8-puzzle has 9!/2 = 181,440 reachable states and is easily solved.

The 15 puzzle (4 x 4 board) has around 1.3 trillion states,an the random instances can be

solved optimally in few milli seconds by the best search algorithms.

The 24-puzzle (on a 5 x 5 board) has around 1025 states ,and random instances are still quite

difficult to solve optimally with current machines and algorithms.

8-queens problem
The goal of 8-queens problem is to place 8 queens on the chessboard such that no queen

attacks any other.(A queen attacks any piece in the same row,column or diagonal).

Figure 2.5 shows an attempted solution that fails: the queen in the right most column is

attacked by the queen at the top left.

An Incremental formulation involves operators that augments the state description,starting

with an empty state.for 8-queens problem,this means each action adds a queen to the state.

A complete-state formulation starts with all 8 queens on the board and move them around.

In either case the path cost is of no interest because only the final state counts.

Figure 1.22 8-queens problem

The first incremental formulation one might try is the following :

o States : Any arrangement of 0 to 8 queens on board is a state.

o Initial state : No queen on the board.

o Successor function : Add a queen to any empty square.

o Goal Test : 8 queens are on the board,none attacked.

 In this formulation,we have 64.63…57 = 3 x 1014 possible sequences to investigate.

 A better formulation would prohibit placing a queen in any square that is already attacked.

:

o States : Arrangements of n queens (0 <= n < = 8) ,one per column in the left most columns

,with no queen attacking another are states.

o Successor function : Add a queen to any square in the left most empty column such that it

is not attacked by any other queen.

This formulation reduces the 8-queen state space from 3 x 1014 to just 2057,and solutions are

easy to find.

For the 100 queens the initial formulation has roughly 10400 states whereas the improved

formulation has about 1052 states. This is a huge reduction,but the improved state space is still

too big for the algorithms to handle.

2.0.1 REAL-WORLD PROBLEMS

ROUTE-FINDING PROBLEM

Route-finding problem is defined in terms of specified locations and transitions along links

between them. Route-finding algorithms are used in a variety of applications,such as routing in

computer networks,military operations planning,and air line travel planning systems.

AIRLINE TRAVEL PROBLEM

The airline travel problem is specifies as follows :

o States : Each is represented by a location(e.g.,an airport) and the current time.

o Initial state : This is specified by the problem.

o Successor function : This returns the states resulting from taking any scheduled

flight(further specified by seat class and location),leaving later than the current time plus

the within-airport transit time,from the current airport to another.

o Goal Test : Are we at the destination by some prespecified time?

o Path cost : This depends upon the monetary cost,waiting time,flight time,customs and

immigration procedures,seat quality,time of dat,type of air plane,frequent-flyer mileage

awards, and so on.

 TOURING PROBLEMS

Touring problems are closely related to route-finding problems,but with an important difference.

Consider for example,the problem,”Visit every city at least once” as shown in Romania map.

As with route-finding the actions correspond to trips between adjacent cities. The state space,

however,is quite different.

The initial state would be “In Bucharest; visited{Bucharest}”.

A typical intermediate state would be “In Vaslui;visited {Bucharest,Urziceni,Vaslui}”.

The goal test would check whether the agent is in Bucharest and all 20 cities have been visited.

THE TRAVELLING SALESPERSON PROBLEM(TSP)

 Is a touring problem in which each city must be visited exactly once. The aim is to find the

shortest tour.The problem is known to be NP-hard. Enormous efforts have been expended to

improve the capabilities of TSP algorithms. These algorithms are also used in tasks such as

planning movements of automatic circuit-board drills and of stocking machines on shop

floors.

VLSI layout

A VLSI layout problem requires positioning millions of components and connections on a chip

to minimize area ,minimize circuit delays,minimize stray capacitances,and maximize

manufacturing yield. The layout problem is split into two parts : cell layout and channel

routing.

ROBOT navigation

ROBOT navigation is a generalization of the route-finding problem. Rather than a discrete set

of routes,a robot can move in a continuous space with an infinite set of possible actions and

states. For a circular Robot moving on a flat surface,the space is essentially two-dimensional.

When the robot has arms and legs or wheels that also must be controlled,the search space

becomes multi-dimensional. Advanced techniques are required to make the search space finite.

AUTOMATIC ASSEMBLY SEQUENCING

The example includes assembly of intricate objects such as electric motors. The aim in assembly

problems is to find the order in which to assemble the parts of some objects. If the wrong order

is choosen,there will be no way to add some part later without undoing somework already done.

Another important assembly problem is protein design,in which the goal is to find a sequence of

Amino acids that will be fold into a three-dimensional protein with the right properties to cure

some disease.

INTERNET SEARCHING

 In recent years there has been increased demand for software robots that perform Internet

searching.,looking for answers to questions,for related information,or for shopping deals. The

searching techniques consider internet as a graph of nodes(pages) connected by links.

2.0.2 SEARCHING FOR SOLUTIONS

SEARCH TREE

Having formulated some problems,we now need to solve them. This is done by a search through

the state space. A search tree is generated by the initial state and the successor function that

together define the state space. In general,we may have a search graph rather than a search

tree,when the same state can be reached from multiple paths.

 Figure 1.23 shows some of the expansions in the search tree for finding a route from Arad to

Bucharest.

Figure 1.23 Partial search trees for finding a route from Arad to Bucharest. Nodes that have

been expanded are shaded.; nodes that have been generated but not yet expanded are outlined in

bold;nodes that have not yet been generated are shown in faint dashed line

The root of the search tree is a search node corresponding to the initial state,In(Arad). The first

step is to test whether this is a goal state. The current state is expanded by applying the successor

function to the current state,thereby generating a new set of states. In this case,we get three new

states: In(Sibiu),In(Timisoara),and In(Zerind). Now we must choose which of these three

possibilities to consider further. This is the essense of search- following up one option now and

putting the others aside for latter,in case the first choice does not lead to a solution.

Search strategy . The general tree-search algorithm is described informally in Figure 1.24

.

Tree Search

Figure 1.24 An informal description of the general tree-search algorithm

The choice of which state to expand is determined by the search strategy. There are an infinite

number paths in this state space ,so the search tree has an infinite number of nodes.

A node is a data structure with five components :

o STATE : a state in the state space to which the node corresponds;

o PARENT-NODE : the node in the search tree that generated this node;

o ACTION : the action that was applied to the parent to generate the node;

o PATH-COST :the cost,denoted by g(n),of the path from initial state to the node,as

indicated by the parent pointers; and

o DEPTH : the number of steps along the path from the initial state.

It is important to remember the distinction between nodes and states. A node is a book keeping

data structure used to represent the search tree. A state corresponds to configuration of the world.

Figure 1.25 Nodes are data structures from which the search tree is

constructed. Each has a parent,a state, Arrows point from child to parent.

Fringe
Fringe is a collection of nodes that have been generated but not yet been expanded. Each element

of the fringe is a leaf node,that is,a node with no successors in the tree. The fringe of each tree

consists of those nodes with bold outlines.

The collection of these nodes is implemented as a queue.

The general tree search algorithm is shown in Figure 2.9

Figure 1.26 The general Tree search algorithm

The operations specified in Figure 1.26 on a queue are as follows:

o MAKE-QUEUE(element,…) creates a queue with the given element(s).

o EMPTY?(queue) returns true only if there are no more elements in the queue.

o FIRST(queue) returns FIRST(queue) and removes it from the queue.

o INSERT(element,queue) inserts an element into the queue and returns the resulting

queue.

o INSERT-ALL(elements,queue) inserts a set of elements into the queue and returns the

resulting queue.

MEASURING PROBLEM-SOLVING PERFORMANCE

The output of problem-solving algorithm is either failure or a solution.(Some algorithms might

struck in an infinite loop and never return an output.

The algorithm’s performance can be measured in four ways :

o Completeness : Is the algorithm guaranteed to find a solution when there is one?

o Optimality : Does the strategy find the optimal solution

o Time complexity : How long does it take to find a solution?

o Space complexity : How much memory is needed to perform the search?

2.0.3 UNINFORMED SEARCH STRATGES

Uninformed Search Strategies have no additional information about states beyond that provided

in the problem definition.

Strategies that know whether one non goal state is “more promising” than another are called

Informed search or heuristic search strategies.

There are five uninformed search strategies as given below.

o Breadth-first search

o Uniform-cost search

o Depth-first search

o Depth-limited search

o Iterative deepening search

2.3.4.1 Breadth-first search
Breadth-first search is a simple strategy in which the root node is expanded first,then all

successors of the root node are expanded next,then their successors,and so on. In general,all the

nodes are expanded at a given depth in the search tree before any nodes at the next level are

expanded.

Breath-first-search is implemented by calling TREE-SEARCH with an empty fringe that is a

first-in-first-out(FIFO) queue,assuring that the nodes that are visited first will be expanded first.

In otherwards,calling TREE-SEARCH(problem,FIFO-QUEUE()) results in breadth-first-search.

The FIFO queue puts all newly generated successors at the end of the queue,which means that

Shallow nodes are expanded before deeper nodes.

Figure 1.27 Breadth-first search on a simple binary tree. At each stage ,the node to be expanded next

is indicated by a marker.

Properties of breadth-first-search

Figure 1.28 Breadth-first-search properties

Figure 1.29 Time and memory requirements for breadth-first-search.

The numbers shown assume branch factor of b = 10 ; 10,000

nodes/second; 1000 bytes/node

Time complexity for BFS

Assume every state has b successors. The root of the search tree generates b nodes at the first

level,each of which generates b more nodes,for a total of b2 at the second level. Each of these

generates b more nodes,yielding b3 nodes at the third level,and so on. Now suppose,that the

solution is at depth d. In the worst case,we would expand all but the last node at level

d,generating bd+1 - b nodes at level d+1.

Then the total number of nodes generated is

b + b2 + b3 + …+ bd + (bd+1 + b) = O(bd+1).

Every node that is generated must remain in memory,because it is either part of the fringe or is an

ancestor of a fringe node. The space compleity is,therefore ,the same as the time complexity

2.3.4.2 UNIFORM-COST SEARCH
Instead of expanding the shallowest node,uniform-cost search expands the node n with the

lowest path cost. uniform-cost search does not care about the number of steps a path has,but only

about their total cost.

Figure 1.30 Properties of Uniform-cost-search

2.5.1.3 DEPTH-FIRST-SEARCH

Depth-first-search always expands the deepest node in the current fringe of the search tree. The

progress of the search is illustrated in figure 1.31. The search proceeds immediately to the

deepest level of the search tree,where the nodes have no successors. As those nodes are

expanded,they are dropped from the fringe,so then the search “backs up” to the next shallowest

node that still has unexplored successors.

Figure 1.31 Depth-first-search on a binary tree. Nodes that have been expanded and have no

descendants in the fringe can be removed from the memory;these are shown in black. Nodes at

depth 3 are assumed to have no successors and M is the only goal node.

This strategy can be implemented by TREE-SEARCH with a last-in-first-out (LIFO) queue,also

known as a stack.

Depth-first-search has very modest memory requirements.It needs to store only a single path

from the root to a leaf node,along with the remaining unexpanded sibling nodes for each node on

the path. Once the node has been expanded,it can be removed from the memory,as soon as its

descendants have been fully explored(Refer Figure 2.12).

For a state space with a branching factor b and maximum depth m,depth-first-search requires

storage of only bm + 1 nodes.

Using the same assumptions as Figure 2.11,and assuming that nodes at the same depth as the goal

node have no successors,we find the depth-first-search would require 118 kilobytes instead of 10

petabytes,a factor of 10 billion times less space.

Drawback of Depth-first-search

The drawback of depth-first-search is that it can make a wrong choice and get stuck going down

very long(or even infinite) path when a different choice would lead to solution near the root of the

search tree. For example ,depth-first-search will explore the entire left subtree even if node C is a

goal node.

BACKTRACKING SEARCH

A variant of depth-first search called backtracking search uses less memory and only one successor

is generated at a time rather than all successors.; Only O(m) memory is needed rather than O(bm)

2.3.4.4 DEPTH-LIMITED-SEARCH
 The problem of unbounded trees can be alleviated by supplying depth-first-search with a pre-

determined depth limit l.That is,nodes at depth l are treated as if they have no successors. This

approach is called depth-limited-search. The depth limit soves the infinite path problem.

Depth limited search will be nonoptimal if we choose l > d. Its time complexity is O(bl) and its

space compleiy is O(bl). Depth-first-search can be viewed as a special case of depth-limited search

with l = oo

Sometimes,depth limits can be based on knowledge of the problem. For,example,on the map of

Romania there are 20 cities. Therefore,we know that if there is a solution.,it must be of length 19 at

the longest,So l = 10 is a possible choice. However,it oocan be shown that any city can be reached

from any other city in at most 9 steps. This number known as the diameter of the state space,gives

us a better depth limit.

Depth-limited-search can be implemented as a simple modification to the general tree-search

algorithm or to the recursive depth-first-search algorithm. The pseudocode for recursive depth-

limited-search is shown in Figure 1.32.

It can be noted that the above algorithm can terminate with two kinds of failure : the standard

failure value indicates no solution; the cutoff value indicates no solution within the depth limit.

Depth-limited search = depth-first search with depth limit l,

returns cut off if any path is cut off by depth limit

function Depth-Limited-Search(problem, limit) returns a solution/fail/cutoff

return Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns solution/fail/cutoff

cutoff-occurred? false

if Goal-Test(problem,State[node]) then return Solution(node)

else if Depth[node] = limit then return cutoff

else for each successor in Expand(node, problem) do

result Recursive-DLS(successor, problem, limit)

if result = cutoff then cutoff_occurred? true

else if result not = failure then return result

if cutoff_occurred? then return cutoff else return failure

Figure 1.32 Recursive implementation of Depth-limited-search:

2.3.4.5 ITERATIVE DEEPENING DEPTH-FIRST SEARCH
Iterative deepening search (or iterative-deepening-depth-first-search) is a general strategy often

used in combination with depth-first-search,that finds the better depth limit. It does this by

gradually increasing the limit – first 0,then 1,then 2, and so on – until a goal is found. This will

occur when the depth limit reaches d,the depth of the shallowest goal node. The algorithm is shown

in Figure 2.14.

Iterative deepening combines the benefits of depth-first and breadth-first-search

Like depth-first-search,its memory requirements are modest;O(bd) to be precise.

Like Breadth-first-search,it is complete when the branching factor is finite and optimal when the

path cost is a non decreasing function of the depth of the node.

Figure 2.15 shows the four iterations of ITERATIVE-DEEPENING_SEARCH on a binary search

tree,where the solution is found on the fourth iteration.

Figure 1.33 The iterative deepening search algorithm ,which repeatedly applies depth-limited-

search with increasing limits. It terminates when a solution is found or if the depth limited search

resturns failure,meaning that no solution exists.

Figure 1.34 Four iterations of iterative deepening search on a binary tree

 Iterative search is not as wasteful as it might seem

Figure 1.35

Iterative search is not as wasteful as it might seem

Properties of iterative deepening search

Figure 1.36

Iterative deepening search

S
S

A D

S

S

A D

S
S

A D

B D A E

Limit = 0
Limit = 1

Limit = 2

 In general,iterative deepening is the prefered uninformed search method when there is a

large search space and the depth of solution is not known.

1.3.4.6 Bidirectional Search
 The idea behind bidirectional search is to run two simultaneous searches –

one forward from he initial state and

the other backward from the goal,

stopping when the two searches meet in the middle (Figure 1.37)

 The motivation is that bd/2 + bd/2 much less than ,or in the figure ,the area of the two small circles

is less than the area of one big circle centered on the start and reaching to the goal.

Figure 1.37 A schematic view of a bidirectional search that is about to succeed,when a

Branch from the Start node meets a Branch from the goal node.

1.3.4.7 Comparing Uninformed Search Strategies
Figure 1.38 compares search strategies in terms of the four evaluation criteria .

Figure 1.38 Evaluation of search strategies,b is the branching factor; d is the depth of the

shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript

caveats are as follows: a complete if b is finite; b complete if step costs >= E for positive E; c

optimal if step costs are all identical; d if both directions use breadth-first search.

2.3.2 AVOIDING REPEATED STATES
 In searching,time is wasted by expanding states that have already been encountered and

expanded before. For some problems repeated states are unavoidable. The search trees for these

problems are infinite. If we prune some of the repeated states,we can cut the search tree down to

finite size. Considering search tree upto a fixed depth,eliminating repeated states yields an

exponential reduction in search cost.

Repeated states ,can cause a solvable problem to become unsolvable if the algorithm does not detect

them.

Repeated states can be the source of great inefficiency: identical sub trees will be explored many

times!

Figure 1.39

Figure 1.40

B B

C C C C

A
A

B

C

Figure 1.41 The General graph search algorithm. The set closed can be implemented with a hash

table to allow efficient checking for repeated states.

Do not return to the previous state.

• Do not create paths with cycles.

• Do not generate the same state twice.

- Store states in a hash table.

- Check for repeated states.

o Using more memory in order to check repeated state

o Algorithms that forget their history are doomed to repeat it.

o Maintain Close-List beside Open-List(fringe)

Strategies for avoiding repeated states

We can modify the general TREE-SEARCH algorithm to include the data structure called the

closed list ,which stores every expanded node. The fringe of unexpanded nodes is called the open

list.

If the current node matches a node on the closed list,it is discarded instead of being expanded.

The new algorithm is called GRAPH-SEARCH and much more efficient than TREE-SEARCH. The

worst case time and space requirements may be much smaller than O(bd).

2.3.2 SEARCHING WITH PARTIAL INFORMATION

o Different types of incompleteness lead to three distinct problem types:

o Sensorless problems (conformant): If the agent has no sensors at all

o Contingency problem: if the environment if partially observable or if

action are uncertain (adversarial)

o Exploration problems: When the states and actions of the environment

are unknown.

o No sensor

o Initial State(1,2,3,4,5,6,7,8)

o After action [Right] the state (2,4,6,8)

o After action [Suck] the state (4, 8)

o After action [Left] the state (3,7)

o After action [Suck] the state (8)

o Answer : [Right,Suck,Left,Suck] coerce the world into state 7 without any

sensor

o Belief State: Such state that agent belief to be there

 (SLIDE 7) Partial knowledge of states and actions:

– sensorless or conformant problem

– Agent may have no idea where it is; solution (if any) is a sequence.

– contingency problem

– Percepts provide new information about current state; solution is a tree or

policy; often interleave search and execution.

– If uncertainty is caused by actions of another agent: adversarial problem

– exploration problem

– When states and actions of the environment are unknown.

Figure

Figure

 Contingency, start in {1,3}.

 Murphy’s law, Suck can dirty a clean carpet.

 Local sensing: dirt, location only.

– Percept = [L,Dirty] ={1,3}

– [Suck] = {5,7}

– [Right] ={6,8}

– [Suck] in {6}={8} (Success)

– BUT [Suck] in {8} = failure

 Solution??

– Belief-state: no fixed action sequence guarantees solution

 Relax requirement:

– [Suck, Right, if [R,dirty] then Suck]

– Select actions based on contingencies arising during execution.

Time and space complexity are always considered with respect to some measure of the problem

difficulty. In theoretical computer science ,the typical measure is the size of the state space.

In AI,where the graph is represented implicitly by the initial state and successor function,the

complexity is expressed in terms of three quantities:

b,the branching factor or maximum number of successors of any node;

d,the depth of the shallowest goal node; and

m,the maximum length of any path in the state space.

Search-cost - typically depends upon the time complexity but can also include the term for

memory usage.

Total–cost – It combines the search-cost and the path cost of the solution found.

2.1 INFORMED SEARCH AND EXPLORATION

2.1.1 Informed(Heuristic) Search Strategies

2.1.2 Heuristic Functions

2.1.3 Local Search Algorithms and Optimization Problems

2.1.4 Local Search in Continuous Spaces

2.1.5 Online Search Agents and Unknown Environments

2.2 CONSTRAINT SATISFACTION PROBLEMS(CSP)
2.2.1 Constraint Satisfaction Problems

2.2.2 Backtracking Search for CSPs

2.2.3 The Structure of Problems

2.3 ADVERSARIAL SEARCH
2.3.1 Games

2.3.2 Optimal Decisions in Games

2.3.3 Alpha-Beta Pruning

2.3.4 Imperfect ,Real-time Decisions

2.3.5 Games that include Element of Chance

2.1 INFORMED SEARCH AND EXPLORATION

2.1.1 Informed(Heuristic) Search Strategies

 Informed search strategy is one that uses problem-specific knowledge beyond the definition

of the problem itself. It can find solutions more efficiently than uninformed strategy.

Best-first search

Best-first search is an instance of general TREE-SEARCH or GRAPH-SEARCH algorithm in

which a node is selected for expansion based on an evaluation function f(n). The node with lowest

evaluation is selected for expansion,because the evaluation measures the distance to the goal.

This can be implemented using a priority-queue,a data structure that will maintain the fringe in

ascending order of f-values.

2.1.2. Heuristic functions

 A heuristic function or simply a heuristic is a function that ranks alternatives in various

search algorithms at each branching step basing on an available information in order to make a

decision which branch is to be followed during a search.

 The key component of Best-first search algorithm is a heuristic function,denoted by h(n):

 h(n) = extimated cost of the cheapest path from node n to a goal node.

 For example,in Romania,one might estimate the cost of the cheapest path from Arad to Bucharest

via a straight-line distance from Arad to Bucharest(Figure 2.1).

Heuristic function are the most common form in which additional knowledge is imparted to the

search algorithm.

Greedy Best-first search

Greedy best-first search tries to expand the node that is closest to the goal,on the grounds that

this is likely to a solution quickly.

It evaluates the nodes by using the heuristic function f(n) = h(n).

Taking the example of Route-finding problems in Romania , the goal is to reach Bucharest starting

from the city Arad. We need to know the straight-line distances to Bucharest from various cities as

shown in Figure 2.1. For example, the initial state is In(Arad) ,and the straight line distance

heuristic hSLD(In(Arad)) is found to be 366.

 Using the straight-line distance heuristic hSLD ,the goal state can be reached faster.

Figure 2.1 Values of hSLD - straight line distances to Bucharest

Figure 2.2 stages in greedy best-first search for Bucharest using straight-line distance heuristic

hSLD. Nodes are labeled with their h-values.

Figure 2.2 shows the progress of greedy best-first search using hSLD to find a path from Arad to

Bucharest. The first node to be expanded from Arad will be Sibiu,because it is closer to Bucharest

than either Zerind or Timisoara. The next node to be expanded will be Fagaras,because it is closest.

Fagaras in turn generates Bucharest,which is the goal.

Properties of greedy search

o Complete?? No–can get stuck in loops, e.g.,

Iasi ! Neamt ! Iasi ! Neamt !

Complete in finite space with repeated-state checking

o Time?? O(bm), but a good heuristic can give dramatic improvement

o Space?? O(bm)—keeps all nodes in memory

o Optimal?? No

Greedy best-first search is not optimal,and it is incomplete.

The worst-case time and space complexity is O(bm),where m is the maximum depth of the search

space.

A* Search
A* Search is the most widely used form of best-first search. The evaluation function f(n) is

obtained by combining

(1) g(n) = the cost to reach the node,and

(2) h(n) = the cost to get from the node to the goal :

f(n) = g(n) + h(n).
A* Search is both optimal and complete. A* is optimal if h(n) is an admissible heuristic. The obvious

example of admissible heuristic is the straight-line distance hSLD. It cannot be an overestimate.

A* Search is optimal if h(n) is an admissible heuristic – that is,provided that h(n) never

overestimates the cost to reach the goal.

An obvious example of an admissible heuristic is the straight-line distance hSLD that we used in

getting to Bucharest. The progress of an A* tree search for Bucharest is shown in Figure 2.2.

The values of ‘g ‘ are computed from the step costs shown in the Romania map(figure 2.1). Also

the values of hSLD are given in Figure 2.1.

Recursive Best-first Search(RBFS)
Recursive best-first search is a simple recursive algorithm that attempts to mimic the operation of

standard best-first search,but using only linear space. The algorithm is shown in figure 2.4.

Its structure is similar to that of recursive depth-first search,but rather than continuing indefinitely

down the current path,it keeps track of the f-value of the best alternative path available from any

ancestor of the current node. If the current node exceeds this limit,the recursion unwinds back to the

alternative path. As the recursion unwinds,RBFS replaces the f-value of each node along the path

with the best f-value of its children.

Figure 2.5 shows how RBFS reaches Bucharest.

Figure 2.3 Stages in A* Search for Bucharest. Nodes are labeled with f = g + h . The h-values are

the straight-line distances to Bucharest taken from figure 2.1

function RECURSIVE-BEST-FIRST-SEARCH(problem) return a solution or failure

return RFBS(problem,MAKE-NODE(INITIAL-STATE[problem]),∞)

function RFBS(problem, node, f_limit) return a solution or failure and a new f-
cost limit

if GOAL-TEST[problem](STATE[node]) then return node

successors  EXPAND(node, problem)

if successors is empty then return failure, ∞

for each s in successors do

f [s]  max(g(s) + h(s), f [node])

repeat

best  the lowest f-value node in successors

if f [best] > f_limit then return failure, f [best]

alternative  the second lowest f-value among successors

result, f [best]  RBFS(problem, best, min(f_limit, alternative))

if result  failure then return result
Figure 2.4 The algorithm for recursive best-first search

Figure 2.5 Stages in an RBFS search for the shortest route to Bucharest. The f-limit value for each

recursive call is shown on top of each current node. (a) The path via Rimnicu Vilcea is followed

until the current best leaf (Pitesti) has a value that is worse than the best alternative path (Fagaras).

(b) The recursion unwinds and the best leaf value of the forgotten subtree (417) is backed up to

Rimnicu Vilcea;then Fagaras is expanded,revealing a best leaf value of 450.

(c) The recursion unwinds and the best leaf value of the forgotten subtree (450) is backed upto

Fagaras; then Rimni Vicea is expanded. This time because the best alternative path(through

Timisoara) costs atleast 447,the expansion continues to Bucharest

RBFS Evaluation :

 RBFS is a bit more efficient than IDA*

– Still excessive node generation (mind changes)

 Like A*, optimal if h(n) is admissible

 Space complexity is O(bd).

– IDA* retains only one single number (the current f-cost limit)

 Time complexity difficult to characterize

– Depends on accuracy if h(n) and how often best path changes.

 IDA* en RBFS suffer from too little memory.

2.1.2 Heuristic Functions
 A heuristic function or simply a heuristic is a function that ranks alternatives in various search

algorithms at each branching step basing on an available information in order to make a decision

which branch is to be followed during a search

Figure 2.6 A typical instance of the 8-puzzle.

 The solution is 26 steps long.

The 8-puzzle

The 8-puzzle is an example of Heuristic search problem. The object of the puzzle is to slide the tiles

horizontally or vertically into the empty space until the configuration matches the goal

configuration(Figure 2.6)

The average cost for a randomly generated 8-puzzle instance is about 22 steps. The branching factor

is about 3.(When the empty tile is in the middle,there are four possible moves;when it is in the

corner there are two;and when it is along an edge there are three). This means that an exhaustive

search to depth 22 would look at about 322 approximately = 3.1 X 1010 states.

By keeping track of repeated states,we could cut this down by a factor of about 170,000,because

there are only 9!/2 = 181,440 distinct states that are reachable. This is a manageable number ,but the

corresponding number for the 15-puzzle is roughly 1013.

If we want to find the shortest solutions by using A*,we need a heuristic function that never

overestimates the number of steps to the goal.

The two commonly used heuristic functions for the 15-puzzle are :

(1) h1 = the number of misplaced tiles.

For figure 2.6 ,all of the eight tiles are out of position,so the start state would have h1 = 8. h1 is an

admissible heuristic.

(2) h2 = the sum of the distances of the tiles from their goal positions. This is called the city

block distance or Manhattan distance.

 h2 is admissible ,because all any move can do is move one tile one step closer to the goal.

 Tiles 1 to 8 in start state give a Manhattan distance of

 h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18.

Neither of these overestimates the true solution cost ,which is 26.

The Effective Branching factor

One way to characterize the quality of a heuristic is the effective branching factor b*. If the total

number of nodes generated by A* for a particular problem is N,and the solution depth is d,then b*

is the branching factor that a uniform tree of depth d would have to have in order to contain N+1

nodes. Thus,

 N + 1 = 1 + b* + (b*)2+…+(b*)d

For example,if A* finds a solution at depth 5 using 52 nodes,then effective branching factor is 1.92.

A well designed heuristic would have a value of b* close to 1,allowing failru large problems to be

solved.

To test the heuristic functions h1 and h2,1200 random problems were generated with solution lengths

from 2 to 24 and solved them with iterative deepening search and with A* search using both h1 and

h2. Figure 2.7 gives the averaghe number of nodes expanded by each strategy and the effective

branching factor.

The results suggest that h2 is better than h1,and is far better than using iterative deepening search.

For a solution length of 14,A* with h2 is 30,000 times more efficient than uninformed iterative

deepening search.

Figure 2.7 Comparison of search costs and effective branching factors for the ITERATIVE-

DEEPENING-SEARCH and A* Algorithms with h1,and h2. Data are average over 100 instances of

the 8-puzzle,for various solution lengths.

Inventing admissible heuristic functions

 Relaxed problems

o A problem with fewer restrictions on the actions is called a relaxed problem

o The cost of an optimal solution to a relaxed problem is an admissible heuristic for the

original problem

o If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h1(n) gives the

shortest solution

o If the rules are relaxed so that a tile can move to any adjacent square, then h2(n) gives the

shortest solution

2.1.3 LOCAL SEARCH ALGORITHMS AND OPTIMIZATION

PROBLEMS
o In many optimization problems, the path to the goal is irrelevant; the goal state itself is the

solution

o For example,in the 8-queens problem,what matters is the final configuration of queens,not

the order in which they are added.

o In such cases, we can use local search algorithms. They operate using a single current

state(rather than multiple paths) and generally move only to neighbors of that state.

o The important applications of these class of problems are (a) integrated-circuit

design,(b)Factory-floor layout,(c) job-shop scheduling,(d)automatic

programming,(e)telecommunications network optimization,(f)Vehicle routing,and (g)

portfolio management.

Key advantages of Local Search Algorithms

(1) They use very little memory – usually a constant amount; and

 (2) they can often find reasonable solutions in large or infinite(continuous) state spaces for which

systematic algorithms are unsuitable.

OPTIMIZATION PROBLEMS

Inaddition to finding goals,local search algorithms are useful for solving pure optimization

problems,in which the aim is to find the best state according to an objective function.

State Space Landscape

To understand local search,it is better explained using state space landscape as shown in figure

2.8.

A landscape has both “location” (defined by the state) and “elevation”(defined by the value of the

heuristic cost function or objective function).

If elevation corresponds to cost,then the aim is to find the lowest valley – a global minimum; if

elevation corresponds to an objective function,then the aim is to find the highest peak – a global

maximum.

Local search algorithms explore this landscape. A complete local search algorithm always finds a

goal if one exists; an optimal algorithm always finds a global minimum/maximum.

Figure 2.8 A one dimensional state space landscape in which elevation corresponds to the

objective function. The aim is to find the global maximum. Hill climbing search modifies the

current state to try to improve it ,as shown by the arrow. The various topographic features are

defined in the text

Hill-climbing search
The hill-climbing search algorithm as shown in figure 2.9, is simply a loop that continually moves

in the direction of increasing value – that is,uphill. It terminates when it reaches a “peak” where no

neighbor has a higher value.

function HILL-CLIMBING(problem) return a state that is a local maximum

 input: problem, a problem

 local variables: current, a node.

 neighbor, a node.

 current  MAKE-NODE(INITIAL-STATE[problem])

 loop do

 neighbor  a highest valued successor of current

 if VALUE [neighbor] ≤ VALUE[current] then return STATE[current]

 current  neighbor

Figure 2.9 The hill-climbing search algorithm (steepest ascent version),which is the most basic

local search technique. At each step the current node is replaced by the best neighbor;the neighbor

with the highest VALUE. If the heuristic cost estimate h is used,we could find the neighbor with the

lowest h.

Hill-climbing is sometimes called greedy local search because it grabs a good neighbor state

without thinking ahead about where to go next. Greedy algorithms often perform quite well.

Problems with hill-climbing
Hill-climbing often gets stuck for the following reasons :

o Local maxima : a local maximum is a peak that is higher than each of its neighboring

states,but lower than the global maximum. Hill-climbing algorithms that reach the vicinity

of a local maximum will be drawn upwards towards the peak,but will then be stuck with

nowhere else to go

o Ridges : A ridge is shown in Figure 2.10. Ridges results in a sequence of local maxima that

is very difficult for greedy algorithms to navigate.

o Plateaux : A plateau is an area of the state space landscape where the evaluation function is

flat. It can be a flat local maximum,from which no uphill exit exists,or a shoulder,from

which it is possible to make progress.

Figure 2.10 Illustration of why ridges cause difficulties for hill-climbing. The grid of states(dark

circles) is superimposed on a ridge rising from left to right,creating a sequence of local maxima that

are not directly connected to each other. From each local maximum,all th available options point

downhill.

Hill-climbing variations
 Stochastic hill-climbing

o Random selection among the uphill moves.

o The selection probability can vary with the steepness of the uphill move.

 First-choice hill-climbing

o cfr. stochastic hill climbing by generating successors randomly until a better one is

found.

 Random-restart hill-climbing

o Tries to avoid getting stuck in local maxima.

Simulated annealing search
A hill-climbing algorithm that never makes “downhill” moves towards states with lower value(or

higher cost) is guaranteed to be incomplete,because it can stuck on a local maximum.In contrast,a

purely random walk –that is,moving to a successor choosen uniformly at random from the set of

successors – is complete,but extremely inefficient.

Simulated annealing is an algorithm that combines hill-climbing with a random walk in someway

that yields both efficiency and completeness.

Figure 2.11 shows simulated annealing algorithm. It is quite similar to hill climbing. Instead of

picking the best move,however,it picks the random move. If the move improves the situation,it is

always accepted. Otherwise,the algorithm accepts the move with some probability less than 1. The

probability decreases exponentially with the “badness” of the move – the amount E by which the

evaluation is worsened.

Simulated annealing was first used extensively to solve VLSI layout problems in the early 1980s. It

has been applied widely to factory scheduling and other large-scale optimization tasks.

Figure 2.11 The simulated annealing search algorithm,a version of stochastic hill climbing where

some downhill moves are allowed.

 Genetic algorithms
A Genetic algorithm(or GA) is a variant of stochastic beam search in which successor states are

generated by combining two parent states,rather than by modifying a single state.

Like beam search,Gas begin with a set of k randomly generated states,called the population. Each

state,or individual,is represented as a string over a finite alphabet – most commonly,a string of 0s

and 1s. For example,an 8 8-quuens state must specify the positions of 8 queens,each in acolumn of

8 squares,and so requires 8 x log2 8 = 24 bits.

Figure 2.12 The genetic algorithm. The initial population in (a) is ranked by the fitness function in

(b),resulting in pairs for mating in (c). They produce offspring in (d),which are subjected to

mutation in (e).

Figure 2.12 shows a population of four 8-digit strings representing 8-queen states. The production

of the next generation of states is shown in Figure 2.12(b) to (e).

In (b) each state is rated by the evaluation function or the fitness function.

In (c),a random choice of two pairs is selected for reproduction,in accordance with the probabilities

in (b).

Figure 2.13 describes the algorithm that implements all these steps.

function GENETIC_ALGORITHM(population, FITNESS-FN) return an individual

 input: population, a set of individuals

 FITNESS-FN, a function which determines the quality of the individual

 repeat

 new_population  empty set

 loop for i from 1 to SIZE(population) do

 x  RANDOM_SELECTION(population, FITNESS_FN)

 y  RANDOM_SELECTION(population, FITNESS_FN)

 child  REPRODUCE(x,y)

 if (small random probability) then child  MUTATE(child)

 add child to new_population

 population  new_population

 until some individual is fit enough or enough time has elapsed

 return the best individual

Figure 2.13 A genetic algorithm. The algorithm is same as the one diagrammed in Figure 2.12,with

one variation:each mating of two parents produces only one offspring,not two.

2.1.4 LOCAL SEARCH IN CONTINUOUS SPACES
 We have considered algorithms that work only in discrete environments,

 but real-world environment are continuous

 Local search amounts to maximizing a continuous objective function

 in a multi-dimensional vector space.

 This is hard to do in general.

 Can immediately retreat

o Discretize the space near each state

o Apply a discrete local search strategy (e.g., stochastic hill climbing,

 simulated annealing)

 Often resists a closed-form solution

o Fake up an empirical gradient

o Amounts to greedy hill climbing in discretized state space

 Can employ Newton-Raphson Method to find maxima

 Continuous problems have similar problems: plateaus, ridges, local

 maxima, etc.

2.1.5 Online Search Agents and Unknown Environments
Online search problems

 Offline Search (all algorithms so far)

 Compute complete solution, ignoring environment Carry out
action sequence

 Online Search

 Interleave computation and action
 Compute—Act—Observe—Compute—·

 Online search good

 For dynamic, semi-dynamic, stochastic domains
 Whenever offline search would yield exponentially many contingencies

 Online search necessary for exploration problem

 States and actions unknown to agent
 Agent uses actions as experiments to determine what to do

Examples
Robot exploring unknown building

Classical hero escaping a labyrinth

 Assume agent knows
 Actions available in state s

Step-cost function c(s,a,s′)
State s is a goal state

 When it has visited a state s previously Admissible heuristic function
h(s)

 Note that agent doesn’t know outcome state (s ′) for a given action (a) until it tries the action
(and all actions from a state s)

 Competitive ratio compares actual cost with cost agent would follow if it knew the search
space

 No agent can avoid dead ends in all state spaces

 Robotics examples: Staircase, ramp, cliff, terrain

 Assume state space is safely explorable—some goal state is always reachable

Online Search Agents

 Interleaving planning and acting hamstrings offline search

 A* expands arbitrary nodes without waiting for outcome of action Online

algorithm can expand only the node it physically occupies Best to explore

nodes in physically local order
 Suggests using depth-first search
 Next node always a child of the current

 When all actions have been tried, can’t just drop state

 Agent must physically backtrack

 Online Depth-First Search

 May have arbitrarily bad competitive ratio (wandering past goal) Okay for
exploration; bad for minimizing path cost

 Online Iterative-Deepening Search

 Competitive ratio stays small for state space a uniform tree

Online Local Search

 Hill Climbing Search
 Also has physical locality in node expansions

Is, in fact, already an online search algorithm
 Local maxima problematic: can’t randomly transport agent to new state in

effort to escape local maximum

 Random Walk as alternative
 Select action at random from current state
 Will eventually find a goal node in a finite space
 Can be very slow, esp. if “backward” steps as common as “forward”

 Hill Climbing with Memory instead of randomness
 Store “current best estimate” of cost to goal at each visited state Starting

estimate is just h(s)
 Augment estimate based on experience in the state space Tends to

“flatten out” local minima, allowing progress Employ optimism under
uncertainty

 Untried actions assumed to have least-possible cost Encourage
exploration of untried paths

Learning in Online Search

o Rampant ignorance a ripe opportunity for learning Agent learns a “map”

of the environment

o Outcome of each action in each state

o Local search agents improve evaluation function accuracy

o Update estimate of value at each visited state

o Would like to infer higher-level domain model

o Example: “Up” in maze search increases y -coordinate Requires
o Formal way to represent and manipulate such general rules (so far, have hidden rules

within the successor function)
o Algorithms that can construct general rules based on observations of the effect of

actions

2.2 CONSTRAINT SATISFACTION PROBLEMS(CSP)

 A Constraint Satisfaction Problem(or CSP) is defined by a set of variables ,X1,X2,….Xn,and

a set of constraints C1,C2,…,Cm. Each variable Xi has a nonempty domain D,of possible values.

Each constraint Ci involves some subset of variables and specifies the allowable combinations of

values for that subset.

A State of the problem is defined by an assignment of values to some or all of the variables,{Xi =

vi,Xj = vj,…}. An assignment that does not violate any constraints is called a consistent or legal

assignment. A complete assignment is one in which every variable is mentioned,and a solution to a

CSP is a complete assignment that satisfies all the constraints.

Some CSPs also require a solution that maximizes an objective function.

Example for Constraint Satisfaction Problem :

Figure 2.15 shows the map of Australia showing each of its states and territories. We are given the

task of coloring each region either red,green,or blue in such a way that the neighboring regions have

the same color. To formulate this as CSP ,we define the variable to be the regions

:WA,NT,Q,NSW,V,SA, and T. The domain of each variable is the set {red,green,blue}.The

constraints require neighboring regions to have distinct colors;for example,the allowable

combinations for WA and NT are the pairs

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}.

The constraint can also be represented more succinctly as the inequality WA not = NT,provided the

constraint satisfaction algorithm has some way to evaluate such expressions.) There are many

possible solutions such as

{ WA = red, NT = green,Q = red, NSW = green, V = red ,SA = blue,T = red}.

It is helpful to visualize a CSP as a constraint graph,as shown in Figure 2.15(b). The nodes of the

graph corresponds to variables of the problem and the arcs correspond to constraints.

Figure 2.15 (a) Principle states and territories of Australia. Coloring this map can be viewed as

aconstraint satisfaction problem. The goal is to assign colors to each region so that no neighboring

regions have the same color.

Figure 2.15 (b) The map coloring problem represented as a constraint graph.

CSP can be viewed as a standard search problem as follows :

 Initial state : the empty assignment {},in which all variables are unassigned.

 Successor function : a value can be assigned to any unassigned variable,provided that it

does not conflict with previously assigned variables.

 Goal test : the current assignment is complete.

 Path cost : a constant cost(E.g.,1) for every step.

Every solution must be a complete assignment and therefore appears at depth n if there are n

variables.

Depth first search algorithms are popular for CSPs

Varieties of CSPs

(i) Discrete variables

Finite domains

 The simplest kind of CSP involves variables that are discrete and have finite domains. Map

coloring problems are of this kind. The 8-queens problem can also be viewed as finite-domain

CSP,where the variables Q1,Q2,…..Q8 are the positions each queen in columns 1,….8 and each

variable has the domain {1,2,3,4,5,6,7,8}. If the maximum domain size of any variable in a CSP is

d,then the number of possible complete assignments is O(dn) – that is,exponential in the number of

variables. Finite domain CSPs include Boolean CSPs,whose variables can be either true or false.

Infinite domains

Discrete variables can also have infinite domains – for example,the set of integers or the set of

strings. With infinite domains,it is no longer possible to describe constraints by enumerating all

allowed combination of values. Instead a constraint language of algebric inequalities such as

Startjob1 + 5 <= Startjob3.

(ii) CSPs with continuous domains

CSPs with continuous domains are very common in real world. For example ,in operation research

field,the scheduling of experiments on the Hubble Telescope requires very precise timing of

observations; the start and finish of each observation and maneuver are continuous-valued variables

that must obey a variety of astronomical,precedence and power constraints. The best known

category of continuous-domain CSPs is that of linear programming problems,where the

constraints must be linear inequalities forming a convex region. Linear programming problems can

be solved in time polynomial in the number of variables.

Varieties of constraints :

(i) unary constraints involve a single variable.

 Example : SA # green

(ii) Binary constraints involve paris of variables.

Example : SA # WA

(iii) Higher order constraints involve 3 or more variables.

Example : cryptarithmetic puzzles.

Figure 2.16 (a) Cryptarithmetic problem. Each letter stands for a distinct digit;the aim is to

find a substitution of digits for letters such that the resulting sum is arithmetically

correct,with the added restriction that no leading zeros are allowed. (b) The constraint

hypergraph for the cryptarithmetic problem,showint the Alldiff constraint as well as the

column addition constraints. Each constraint is a square box connected to the variables it

contains.

2.2.2 Backtracking Search for CSPs
The term backtracking search is used for depth-first search that chooses values for one variable at

a time and backtracks when a variable has no legal values left to assign. The algorithm is shown in

figure 2.17.

Figure 2.17 A simple backtracking algorithm for constraint satisfaction problem. The algorithm is

modeled on the recursive depth-first search

Figure 2.17(b) Part of search tree generated by simple backtracking for the map coloring problem.

Propagating information through constraints
So far our search algorithm considers the constraints on a variable only at the time that the

variable is chosen by SELECT-UNASSIGNED-VARIABLE. But by looking at some of the

constraints earlier in the search, or even before the search has started, we can drastically

reduce the search space.

Forward checking

One way to make better use of constraints during search is called forward checking. Whenever a variable X
is assigned, the forward checking process looks at each unassigned variable Y that is connected to X by a

constraint and deletes from Y ’s domain any value that is inconsistent with the value chosen for X. Figure 5.6

shows the progress of a map-coloring search with forward checking.

Constraint propagation
Although forward checking detects many inconsistencies, it does not detect all of them.

Constraint propagation is the general term for propagating the implications of a constraint on one variable

onto other variables.

Arc Consistency

k-Consistency

Local Search for CSPs

2.2.3 The Structure of Problems

Problem Structure

Independent Subproblems

Tree-Structured CSPs

2.4 ADVERSARIAL SEARCH
 Competetive environments,in which the agent’s goals are in conflict,give rise to adversarial search

problems – often known as games.

2.4.1 Games
Mathematical Game Theory,a branch of economics,views any multiagent environment as a game

provided that the impact of each agent on the other is “significant”,regardless of whether the agents

are cooperative or competitive. In,AI,”games” are deterministic,turn-taking,two-player,zero-sum

games of perfect information. This means deterministic,fully observable environments in which

there are two agents whose actions must alternate and in which the utility values at the end of the

game are always equal and opposite. For example,if one player wins the game of chess(+1),the

other player necessarily loses(-1). It is this opposition between the agents’ utility functions that

makes the situation adversarial.

Formal Definition of Game

We will consider games with two players,whom we will call MAX and MIN. MAX moves first,and

then they take turns moving until the game is over. At the end of the game, points are awarded to

the winning player and penalties are given to the loser. A game can be formally defined as a search

problem with the following components :

o The initial state,which includes the board position and identifies the player to move.

o A successor function,which returns a list of (move,state) pairs,each indicating a legal move

and the resulting state.

o A terminal test,which describes when the game is over. States where the game has ended

are called terminal states.

o A utility function (also called an objective function or payoff function),which give a

numeric value for the terminal states. In chess,the outcome is a win,loss,or draw,with values

+1,-1,or 0. he payoffs in backgammon range from +192 to -192.

Game Tree
The initial state and legal moves for each side define the game tree for the game. Figure 2.18

shows the part of the game tree for tic-tac-toe (noughts and crosses). From the initial state,MAX has

nine possible moves. Play alternates between MAX’s placing an X and MIN’s placing a 0 until we

reach leaf nodes corresponding to the terminal states such that one player has three in a row or all

the squares are filled. He number on each leaf node indicates the utility value of the terminal state

from the point of view of MAX;high values are assumed to be good for MAX and bad for MIN. It is

the MAX’s job to use the search tree(particularly the utility of terminal states) to determine the best

move.

Figure 2.18 A partial search tree . The top node is the initial state,and MAX move first,placing an X in an

empty square.

2.4.2 Optimal Decisions in Games

In normal search problem,the optimal solution would be a sequence of move leading to a goal

state – a terminal state that is a win. In a game,on the other hand,MIN has something to say about

it,MAX therefore must find a contingent strategy,which specifies MAX’s move in the initial

state,then MAX’s moves in the states resulting from every possible response by MIN,then MAX’s

moves in the states resulting from every possible response by MIN those moves,and so on. An

optimal strategy leads to outcomes at least as good as any other strategy when one is playing an

infallible opponent.

Figure 2.19 A two-ply game tree. The nodes are “MAX nodes”,in which it is AMX’s turn to

move,and the nodes are “MIN nodes”. The terminal nodes show the utility values for MAX;

the other nodes are labeled with their minimax values. MAX’s best move at the root is a1,because it

leads to the successor with the highest minimax value,and MIN’s best reply is b1,because it leads to

the successor with the lowest minimax value.

Figure 2.20 An algorithm for calculating minimax decisions. It returns the

action corresponding to the best possible move,that is,the move that leads to the

outcome with the best utility,under the assumption that the opponent plays to

minimize utility. The functions MAX-VALUE and MIN-VALUE go through

the whole game tree,all the way to the leaves,to determine the backed-up value

of a state.

The minimax Algorithm

The minimax algorithm(Figure 2.20) computes the minimax decision from the current state.

It uses a simple recursive computation of the minimax values of each successor state,directly

implementing the defining equations. The recursion proceeds all the way down to the leaves

of the tree ,and then the minimax values are backed up through the tree as the recursion

unwinds. For example in Figure 2.19,the algorithm first recourses down to the three bottom

left nodes,and uses the utitliy function on them to discover that their values are 3,12,and 8

respectively. Then it takes the minimum of these values,3,and returns it as the backed-up

value of node B. A similar process gives the backed up values of 2 for C and 2 for D.

Finally,we take the maximum of 3,2,and 2 to get the backed-up value of 3 at the root node.

The minimax algorithm performs a complete depth-first exploration of the game tree. If the

maximum depth of the tree is m,and there are b legal moves at each point,then the time

complexity of the minimax algorithm is O(bm). The space complexity is O(bm) for an

algorithm that generates successors at once.

2.4.3 Alpha-Beta Pruning

The problem with minimax search is that the number of game states it has to examine is

exponential in the number of moves. Unfortunately,we can’t eliminate the exponent,but we can

effectively cut it in half. By performing pruning,we can eliminate large part of the tree from

consideration. We can apply the technique known as alpha beta pruning ,when applied to a

minimax tree ,it returns the same move as minimax would,but prunes away branches that cannot

possibly influence the final decision.

Alpha Beta pruning gets its name from the following two parameters that describe bounds

on the backed-up values that appear anywhere along the path:

o α : the value of the best(i.e.,highest-value) choice we have found so far at any choice point

along the path of MAX.

o β: the value of best (i.e., lowest-value) choice we have found so far at any choice point

along the path of MIN.

Alpha Beta search updates the values of α and β as it goes along and prunes the remaining branches

at anode(i.e.,terminates the recursive call) as soon as the value of the current node is known to be

worse than the current α and β value for MAX and MIN,respectively. The complete algorithm is

given in Figure 2.21.

 The effectiveness of alpha-beta pruning is highly dependent on the order in which the successors

are examined. It might be worthwhile to try to examine first the successors that are likely to be the

best. In such case,it turns out that alpha-beta needs to examine only O(bd/2) nodes to pick the best

move,instead of O(bd) for minimax. This means that the effective branching factor becomes sqrt(b)

instead of b – for chess,6 instead of 35. Put anotherway alpha-beta cab look ahead roughly twice as

far as minimax in the same amount of time.

Figure 2.21 The alpha beta search algorithm. These routines are the same as the

minimax routines in figure 2.20,except for the two lines in each of MIN-VALUE and

MAX-VALUE that maintain α and β

2.4.4 Imperfect ,Real-time Decisions
 The minimax algorithm generates the entire game search space,whereas the alpha-beta algorithm allows

us to prune large parts of it. However,alpha-beta still has to search all the way to terminal states for atleast a

portion of search space. Shannon’s 1950 paper,Programming a computer for playing chess,proposed that

programs should cut off the search earlier and apply a heuristic evaluation function to states in the

search,effectively turning nonterminal nodes into terminal leaves. The basic idea is to alter minimax or

alpha-beta in two ways :

(1) The utility function is replaced by a heuristic evaluation function EVAL,which gives an estimate of the

position’s utility,and

(2) the terminal test is replaced by a cutoff test that decides when to apply EVAL.

2.4.5 Games that include Element of Chance

Evaluation functions

An evaluation function returns an estimate of the expected utility of the game from a given position,just as

the heuristic function return an estimate of the distance to the goal.

Games of imperfect information

o Minimax and alpha-beta pruning require too much leaf-node evaluations.

May be impractical within a reasonable amount of time.

o SHANNON (1950):

o Cut off search earlier (replace TERMINAL-TEST by CUTOFF-TEST)

o Apply heuristic evaluation function EVAL (replacing utility function of alpha-beta)

Cutting off search

 Change:

– if TERMINAL-TEST(state) then return UTILITY(state)

 into

– if CUTOFF-TEST(state,depth) then return EVAL(state)

 Introduces a fixed-depth limit depth

– Is selected so that the amount of time will not exceed what the rules of the game

allow.

 When cuttoff occurs, the evaluation is performed.

Heuristic EVAL

 Idea: produce an estimate of the expected utility of the game from a given position.

 Performance depends on quality of EVAL.

 Requirements:

– EVAL should order terminal-nodes in the same way as UTILITY.

– Computation may not take too long.

– For non-terminal states the EVAL should be strongly correlated with the actual

chance of winning.

 Only useful for quiescent (no wild swings in value in near future) states

Weighted Linear Function

 The introductory chess books give an approximate material value for each piece : each pawn is

worth 1,a knight or bishop is worth 3,a rook 3,and the queen 9. These feature values are then added

up toobtain the evaluation of the position. Mathematically,these kind of evaluation fuction is called

weighted linear function,and it can be expressed as :

 Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

• e.g., w1 = 9 with

 f1(s) = (number of white queens) – (number of black queens), etc.

Games that include chance

 In real life,there are many unpredictable external events that put us into unforeseen situations.

Many games mirror this unpredictability by including a random element,such as throwing a dice.

Backgammon is a typical game that combines luck and skill. Dice are rolled at the beginning of

player’s turn to determine the legal moves. The backgammon position of Figure 2.23,for

example,white has rolled a 6-5,and has four possible moves.

Figure 2.23 A typical backgammon position. The goal of the game is to move all

one’s pieces off the board. White moves clockwise toward 25,and black moves

counterclockwise toward 0. A piece can move to any position unless there are

multiple opponent pieces there; if there is one opponent ,it is captured and must

start over. In the position shown,white has rolled 6-5 and must choose among four

legal moves (5-10,5-11),(5-11,19-24),(5-10,10-16),and (5-11,11-16)

 White moves clockwise toward 25

 Black moves counterclockwise

 toward 0

 A piece can move to any position

unless there are multiple opponent

pieces there; if there is one

opponent, it is captured and

must start over.

 White has rolled 6-5 and must

choose among four legal moves:

(5-10, 5-11), (5-11, 19-24)

(5-10, 10-16), and (5-11, 11-16)

--

Figure 2-24 Schematic game tree for a backgammon position.

Expected minimax value

EXPECTED-MINIMAX-VALUE(n)=

 UTILITY(n)

 If n is a terminal

 maxs  successors(n)

MINIMAX-VALUE(s) If n is a max node

 mins  successors(n)

MINIMAX-VALUE(s) If n is a max node

 s  successors(n) P(s) .

EXPECTEDMINIMAX(s) If n is a chance node

These equations can be backed-up recursively all the way to the root of the game

tree.

--

