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1.1 Introduction to AI 

 
  1.1.1 What is artificial intelligence? 
            Artificial Intelligence is the branch of computer science concerned with making computers 

behave like humans.  

         Major AI textbooks define artificial intelligence as "the study and design of intelligent 

agents," where an intelligent agent is a system that perceives its environment and takes actions 

which maximize its chances of success. John McCarthy, who coined the term in 1956, defines it as 

"the science and engineering of making intelligent machines,especially intelligent computer 

programs."  

The definitions of AI according to some text books are categorized into four approaches and are 

summarized in the table below : 

 

Systems that think like humans 

“The exciting new effort to make computers 

think … machines with minds,in the full and 

literal sense.”(Haugeland,1985) 

 

Systems that think rationally 

“The study of mental faculties through the use of 

computer models.”  

(Charniak and McDermont,1985) 

Systems that act like humans 

The art of creating machines that perform 

functions that require intelligence when 

performed by people.”(Kurzweil,1990) 

Systems that act rationally 

“Computational intelligence is the study of the 

design of intelligent agents.”(Poole et al.,1998) 

 

The four approaches in more detail are as follows : 

 

(a) Acting humanly : The Turing Test approach 
o Test proposed by Alan Turing in 1950 

o The computer is asked questions by a human interrogator.  

The computer passes the test if a human interrogator,after posing some written questions,cannot tell 

whether the written responses come from a person or not. Programming a computer to pass ,the 

computer need to possess the following capabilities : 

 Natural language processing to enable it to communicate successfully in English. 

 Knowledge representation to store what it knows or hears 

 Automated reasoning to use the stored information to answer questions and to draw 

new conclusions. 



 Machine learning to adapt to new circumstances and to detect and extrapolate 

patterns 

                To pass the complete Turing Test,the computer will need 

 Computer vision  to perceive the objects,and  

 Robotics to manipulate objects and move about. 

(b)Thinking humanly : The cognitive modeling approach 

           We need to get inside actual working of  the human mind : 

(a) through introspection – trying to capture our own thoughts as they go by; 

(b) through psychological experiments 

 Allen Newell and Herbert Simon,who developed GPS,the “General Problem Solver” 

tried to trace the reasoning steps to traces of human subjects solving the same problems. 

The interdisciplinary field of cognitive science brings together computer models from AI 

and experimental techniques from psychology to try to construct precise and testable 

theories of the workings of the human mind 

      

(c) Thinking rationally : The “laws of thought approach” 
             The Greek philosopher Aristotle was one of the first to attempt to codify “right 

thinking”,that is irrefuatable reasoning processes. His syllogism provided patterns for argument 

structures that always yielded correct conclusions when given correct premises—for 

example,”Socrates is a man;all men are mortal;therefore Socrates is mortal.”. 

These laws of thought were supposed to govern the operation of the mind;their study initiated a 

field called logic. 

 

(d) Acting rationally : The rational agent approach 
An agent is something that acts. Computer agents are not mere programs ,but they are expected to 

have the following attributes also : (a) operating under autonomous control, (b) perceiving their 

environment, (c) persisting over a prolonged time period, (e) adapting to change. 

A rational agent is one that acts so as to achieve the best outcome. 

 

1.1.2 The foundations of Artificial Intelligence 
The various disciplines that contributed ideas,viewpoints,and techniques to AI are given 

below : 

Philosophy(428 B.C. – present) 

Aristotle (384-322 B.C.) was the first to formulate a precise set of laws governing the rational part 

of the mind. He developed an informal system of syllogisms for proper reasoning,which allowed 

one to generate conclusions mechanically,given initial premises. 

 

 Computer  Human Brain 

Computational units 

Storage units 

 

Cycle time 

Bandwidth 

Memory updates/sec 

1 CPU,108 gates 

1010 bits RAM 

1011 bits disk 

10-9 sec 

1010 bits/sec 

109 

1011 neurons 

1011 neurons 

1014 synapses 

10-3 sec 

1014 bits/sec 

1014 

Table 1.1 A crude comparison of the raw computational resources available to computers(circa 

2003 ) and brain. The computer’s numbers have increased by at least by a factor of 10 every few 



years. The brain’s numbers have not changed for the last 10,000 years. 

 

Brains and digital computers perform quite different tasks and have different properties. Tablere 1.1 

shows that there are 10000 times more neurons in the typical human brain  than there are gates in 

the CPU of a typical high-end computer. Moore’s Law predicts that the CPU’s gate count will equal 

the brain’s neuron count around 2020. 

 

Psycology(1879 – present) 

The origin of scientific psychology are traced back to the wok if German physiologist Hermann von 

Helmholtz(1821-1894) and his student Wilhelm Wundt(1832 – 1920) 

In 1879,Wundt opened the first laboratory of experimental psychology at the university of Leipzig. 

In US,the development of computer modeling  led to the creation of the field of cognitive science. 

The field can be said to have started at the workshop in September 1956 at MIT. 

 

Computer engineering (1940-present) 

For artificial intelligence to succeed, we need two things: intelligence and an artifact. The 

computer has been the artifact of choice. 

A1 also owes a debt to the software side of computer science, which has supplied the 

operating systems, programming languages, and tools needed to write modern programs 
 

Control theory and Cybernetics (1948-present) 

Ktesibios of Alexandria (c. 250 B.c.) built the first self-controlling machine: a water clock 

with a regulator that kept the flow of water running through it at a constant, predictable pace. 

Modern control theory, especially the branch known as stochastic optimal control, has 

as its goal the design of systems that maximize an objective function over time. 
 

Linguistics (1957-present) 

Modem linguistics and AI, then, were "born" at about the same time, and grew up 

together, intersecting in a hybrid field called computational linguistics or natural language 

processing. 

 

1.1.3 The History of Artificial Intelligence 
The gestation of artificial intelligence (1943-1955) 

There were a number of early examples of work that can be characterized as AI, but it 

was Alan Turing who first articulated a complete vision of A1 in his 1950 article "Comput- 

ing Machinery and Intelligence." Therein, he introduced the Turing test, machine learning, 

genetic algorithms, and reinforcement learning. 
 

The birth of artificial intelligence (1956) 

McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help him 

bring together U.S. researchers interested in automata theory, neural nets, and the study of 

intelligence. They organized a two-month workshop at Dartmouth in the summer of 1956. 

Perhaps the longest-lasting thing to come out of the workshop was an agreement to adopt McCarthy's 

new name for the field: artificial intelligence. 
 

Early enthusiasm, great expectations (1952-1969) 

The early years of A1 were full of successes-in a limited way. 

General Problem Solver (GPS) was a computer program created in 1957 by Herbert Simon and 

Allen Newell to build a universal problem solver machine. The order in which the program considered 

subgoals and possible actions was similar to that in which humans approached the same problems. Thus, 

GPS was probably the first program to embody the "thinking humanly" approach. 



At IBM, Nathaniel Rochester and his colleagues produced some of the first A1 pro- 

grams. Herbert Gelernter (1959) constructed the Geometry Theorem Prover, which was 

able to prove theorems that many students of mathematics would find quite tricky. 

Lisp was invented by John McCarthy in 1958 while he was at the Massachusetts Institute of 

Technology (MIT). In 1963, McCarthy started the AI lab at Stanford. 

Tom Evans's ANALOGY program (1968) solved geometric analogy problems that appear in IQ tests, such as 

the one in Figure 1.1 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.1 The Tom Evan’s ANALOGY program could solve geometric analogy problems  as 

shown.  

 
 

A dose of reality (1966-1973) 

From the beginning, AI researchers were not shy about making predictions of their coming 

successes. The following statement by Herbert Simon in 1957 is often quoted: 

“It is not my aim to surprise or shock you-but the simplest way I can summarize is to say 

that there are now in the world machines that think, that learn and that create. Moreover, 

their ability to do these things is going to increase rapidly until-in a visible future-the 

range of problems they can handle will be coextensive with the range to which the human 

mind has been applied. 

Knowledge-based systems: The key to power? (1969-1979) 
Dendral was an influential pioneer project in artificial intelligence (AI) of the 1960s, and the 

computer software expert system that it produced. Its primary aim was to help organic chemists in 

identifying unknown organic molecules, by analyzing their mass spectra and using knowledge of 

chemistry. It was done at Stanford University by Edward Feigenbaum, Bruce Buchanan, Joshua 

Lederberg, and Carl Djerassi. 

 

A1 becomes an industry (1980-present) 

In 1981, the Japanese announced the "Fifth Generation" project, a 10-year plan to build 

intelligent computers running Prolog. Overall, the A1 industry boomed from a few million dollars in 1980 to 

billions of dollars in 1988. 



The return of neural networks (1986-present) 

Psychologists including David Rumelhart and Geoff Hinton continued the study of neural-net models of 

memory. 

A1 becomes a science (1987-present) 

In recent years, approaches based on hidden Markov models (HMMs) have come to dominate the area. 

Speech technology and the related field of handwritten character recognition are already making the 

transition to widespread industrial and consumer applications. 

The Bayesian network formalism was invented to allow efficient representation of, and rigorous reasoning 

with, uncertain knowledge. 

The emergence of intelligent agents (1995-present) 

One of the most important environments for intelligent agents is the Internet. 
 

1.1.4 The state of art  
What can A1 do today? 
Autonomous planning and scheduling: A hundred million miles from Earth, NASA's 

Remote Agent program became the first on-board autonomous planning program to control 

the scheduling of operations for a spacecraft (Jonsson et al., 2000). Remote Agent generated 

plans from high-level goals specified from the ground, and it monitored the operation of the 

spacecraft as the plans were executed-detecting, diagnosing, and recovering from problems 

as they occurred. 

Game playing: IBM's Deep Blue became the first computer program to defeat the 

world champion in a chess match when it bested Garry Kasparov by a score of 3.5 to 2.5 in 

an exhibition match (Goodman and Keene, 1997).  

Autonomous control: The ALVINN computer vision system was trained to steer a car 

to keep it following a lane. It was placed in CMU's NAVLAB computer-controlled minivan 

and used to navigate across the United States-for 2850 miles it was in control of steering the 

vehicle 98% of the time.  

Diagnosis: Medical diagnosis programs based on probabilistic analysis have been able 

to perform at the level of an expert physician in several areas of medicine.  

Logistics Planning: During the Persian Gulf crisis of 1991, U.S. forces deployed a 

Dynamic Analysis and Replanning Tool, DART (Cross and Walker, 1994), to do automated 

logistics planning and scheduling for transportation. This involved up to 50,000 vehicles, 

cargo, and people at a time, and had to account for starting points, destinations, routes, and 

conflict resolution among all parameters. The AI planning techniques allowed a plan to be 

generated in hours that would have taken weeks with older methods. The Defense Advanced 

Research Project Agency (DARPA) stated that this single application more than paid back 

DARPA's 30-year investment in AI. 

Robotics: Many surgeons now use robot assistants in microsurgery. HipNav (DiGioia 

et al., 1996) is a system that uses computer vision techniques to create a three-dimensional 

model of a patient's internal anatomy and then uses robotic control to guide the insertion of a 

hip replacement prosthesis. 

Language understanding and problem solving: PROVERB (Littman et al., 1999) is a 

computer program that solves crossword puzzles better than most humans, using constraints 

on possible word fillers, a large database of past puzzles, and a variety of information sources 

including dictionaries and online databases such as a list of movies and the actors that appear 

in them.  
 

1.2 INTELLIGENT AGENTS 

 
1.2.1 Agents and environments 
             An agent is anything that can be viewed as perceiving its environment through sensors and 



SENSOR acting upon that environment through actuators. This simple idea is illustrated in Figure 1.2. 

 

o A human agent has eyes, ears, and other organs for sensors and hands, legs, mouth, and other body 

parts for actuators.  

o A robotic agent might have cameras and infrared range finders for sensors and various motors for 

actuators.  

o A software agent receives keystrokes, file contents, and network packets as sensory inputs and acts 

on the environment by displaying on the screen, writing files, and sending network packets. 

 

 

 

 

Figure 1.2 Agents interact with environments through sensors and actuators. 

 
              

Percept 
We use the term percept to refer to the agent's perceptual inputs at any given instant.  

Percept Sequence 
An  agent's percept sequence is the complete history of everything the agent has ever perceived. 

Agent function 
Mathematically speaking, we say that an agent's behavior is described by the agent function 
that maps any given percept sequence to an action. 

 
Agent program 

Internally, The agent function for an artificial agent will be implemented by an agent program. It is 

important to keep these two ideas distinct. The agent function is an abstract mathematical 

description; the agent program is a concrete implementation, running on the agent architecture. 
 

 

           To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world 

shown in Figure 1.3. This particular world has just two locations: squares A and B. The vacuum 

agent perceives which square it is in and whether there is dirt in the square. It can choose to move 

left, move right, suck up the dirt, or do nothing. One very simple agent function is the following: if 

the current square is dirty, then suck, otherwise move to the other square. A partial tabulation of this 

agent function is shown in Figure 1.4. 

 



 

Figure 1.3 A vacuum-cleaner world with just two 

locations. 

 

 
 

Agent function 

 

Percept Sequence Action 

[A, Clean] Right 

[A, Dirty] Suck 

[B, Clean] Left 

[B, Dirty] Suck 

[A, Clean], [A, Clean] Right 

[A, Clean], [A, Dirty] Suck 

…   

Figure 1.4 Partial tabulation of a 

simple agent function for the 

vacuum-cleaner world shown in 

Figure 1.3. 

 

 

 
 

Rational Agent 

A rational agent is one that does the right thing-conceptually speaking, every entry in 

the table for the agent function is filled out correctly. Obviously, doing the right thing is 

better than doing the wrong thing. The right action is the one that will cause the agent to be 

most successful. 

Performance measures 

A performance measure embodies the criterion for success of an agent's behavior. When 

an agent is plunked down in an environment, it generates a sequence of actions according 

to the percepts it receives. This sequence of actions causes the environment to go through a 

sequence of states. If the sequence is desirable, then the agent has performed well. 

Rationality 
What is rational at any given time depends on four things: 



o The performance measure that defines the criterion of success. 

o The agent's prior knowledge of the environment. 

o The actions that the agent can perform. 

o The agent's percept sequence to date. 

 
This leads to a definition of a rational agent: 

For each possible percept sequence, a rational agent should select an action that is ex- 

pected to maximize its performance measure, given the evidence provided by the percept 

sequence and whatever built-in knowledge the agent has. 

 

Omniscience, learning, and autonomy 

       An omniscient agent knows the actual outcome of its actions and can act accordingly; but 

omniscience is impossible in reality. 

       Doing actions in order to modify future percepts-sometimes called information gathering-is 

an important part of rationality. 

      Our definition requires a rational agent not only to gather information, but also to learn 

as much as possible from what it perceives. 

         To the extent that an agent relies on the prior knowledge of its designer rather than 

on its own percepts, we say that the agent lacks autonomy. A rational agent should be 

autonomous-it should learn what it can to compensate for partial or incorrect prior knowledge. 

 

Task environments 
We must think about task environments, which are essentially the "problems" to which rational agents are 

the "solutions." 

Specifying the task environment 
      The rationality of the simple vacuum-cleaner agent, needs specification of  

o the performance measure 

o the environment  

o the agent's actuators and sensors.  

 

PEAS 
All these are grouped together under the heading of the task environment.  

We call this the PEAS (Performance, Environment, Actuators, Sensors) description. 

In designing an agent, the first step must always be to specify the task environment as fully 

as possible. 

Agent Type Performance 

Measure 

Environments Actuators Sensors 

Taxi driver 

 

Safe: fast, legal,  

comfortable trip, 

maximize profits 

 

Roads,other 

traffic,pedestrians, 

customers 

Steering,accelerator, 

brake, 

Signal,horn,display 

Cameras,sonar, 

Speedometer,GPS, 

Odometer,engine 

sensors,keyboards, 

accelerometer 

Figure 1.5  PEAS description of the task environment for an automated taxi. 

 

 

 



 
Figure 1.6 Examples of agent types and their PEAS descriptions. 

 
 

Properties of task environments 

 

o Fully observable vs. partially observable 

o Deterministic vs. stochastic 

o Episodic vs. sequential 

o Static vs. dynamic 

o Discrete vs. continuous 

o Single agent vs. multiagent 

Fully observable vs. partially observable. 

If an agent's sensors give it access to the complete state of the environment at each 

point in time, then we say that the task environment is fully observable. A task envi- 

ronment is effectively fully observable if the sensors detect all aspects that are relevant 

to the choice of action; 

An environment might be partially observable because of noisy and inaccurate sensors or because 

parts of the state are simplly missing from the sensor data. 

Deterministic vs. stochastic. 

 If the next state of the environment is completely determined by the current state and 

the action executed by the agent, then we say the environment is deterministic; other- 

wise, it is stochastic. 

Episodic vs. sequential 

 In an episodic task environment, the agent's experience is divided into atomic episodes. 

Each episode consists of the agent perceiving and then performing a single action. Cru- 

cially, the next episode does not depend on the actions taken in previous episodes. 



For example, an agent that has to spot defective parts on an assembly line bases each decision on 

the current part, regardless of previous decisions; 

In sequential environments, on the other hand, the current decision 

could affect all future decisions. Chess and taxi driving are sequential: 

Discrete vs. continuous. 

The discrete/continuous distinction can be applied to the state of the environment, to 

the way time is handled, and to the percepts and actions of the agent. For example, a 

discrete-state environment such as a chess game has a finite number of distinct states. 

Chess also has a discrete set of percepts and actions. Taxi driving is a continuous- 

state and continuous-time problem: the speed and location of the taxi and of the other 

vehicles sweep through a range of continuous values and do so smoothly over time. 

Taxi-driving actions are also continuous (steering angles, etc.). 

 

Single agent vs. multiagent. 

    An agent solving a crossword puzzle by itself is clearly in a 

single-agent environment, whereas an agent playing chess is in a two-agent environ- 

ment. 
As one might expect, the hardest case is partially observable, stochastic, sequential, dynamic, 

continuous, and multiagent. 
 

Figure 1.7 lists the properties of a number of familiar environments. 

 

 
Figure 1.7 Examples of task environments and their characteristics. 

 

Agent programs 
The agent programs all have the same skeleton: they take the current percept as input from the 

sensors and return an action to the actuatom6 Notice the difference between the agent program, 

which takes the current percept as input, and the agent function, which takes the entire percept 

history. The agent program takes just the current percept as input because nothing more is available 

from the environment; if the agent's actions depend on the entire percept sequence, the agent will 

have to remember the percepts. 

 

Function TABLE-DRIVEN_AGENT(percept) returns an action 

  

 static: percepts, a sequence initially empty 

  table, a table of actions, indexed by percept sequence 

  



 append percept to the end of percepts 

 action  LOOKUP(percepts, table) 

 return action  

 

 

Figure 1.8  The TABLE-DRIVEN-AGENT program is invoked for each new percept and 

returns an action each time. 

 

Drawbacks: 

• Table lookup of percept-action pairs defining all possible condition-action rules necessary 

to interact in an environment  

• Problems  

– Too big to generate and to store (Chess has about 10^120 states, for example)  

– No knowledge of non-perceptual parts of the current state  

– Not adaptive to changes in the environment; requires entire table to be updated if 

changes occur  

– Looping: Can't make actions conditional  

 

• Take a long time to build the table 

• No autonomy 

• Even with learning, need a long time to learn the table entries 

 

 

Some Agent Types 

• Table-driven agents  
– use a percept sequence/action table in memory to find the next action. They are 

implemented by a (large) lookup table.  

• Simple reflex agents  
– are based on condition-action rules, implemented with an appropriate production 

system. They are stateless devices which do not have memory of past world states.  

• Agents with memory  
– have internal state, which is used to keep track of past states of the world.  

• Agents with goals  
– are agents that, in addition to state information, have goal information that describes 

desirable situations. Agents of this kind take future events into consideration.  

• Utility-based agents  
– base their decisions on classic axiomatic utility theory in order to act rationally.  

 

Simple Reflex Agent 
 
         The simplest kind of agent is the simple reflex agent. These agents select actions on the basis of the 

current percept, ignoring the rest of the percept history. For example, the vacuum agent whose agent function 

is tabulated in Figure 1.10 is a simple reflex agent, because its decision is based only on the current location 

and on whether that contains dirt.  

o Select action on the basis of only the current percept. 

E.g. the vacuum-agent 

o Large reduction in possible percept/action situations(next page).  

o Implemented through condition-action rules 

If dirty then suck 

 



A Simple Reflex Agent: Schema  

 

 

 
Figure 1.9  Schematic diagram of a simple reflex agent. 

 

 

 

function SIMPLE-REFLEX-AGENT(percept) returns an action 

 

static: rules, a set of condition-action rules 

state  INTERPRET-INPUT(percept) 

rule  RULE-MATCH(state, rule) 

action  RULE-ACTION[rule] 

return action 

 

Figure 1.10  A simple reflex agent. It acts according to a rule whose condition matches 

the current state, as defined by the percept. 

 

 

function REFLEX-VACUUM-AGENT ([location, status]) return an action 
 if status == Dirty then return Suck 
 else if location == A then return Right 
 else if location == B then return Left 

 

Figure 1.11 The agent program for a simple reflex agent in the two-state vacuum environment. This 

program implements the agent function tabulated in the figure 1.4. 

 
 
 Characteristics 

o Only works if the environment is fully observable. 

o Lacking history, easily get stuck in infinite loops 

o One solution is to randomize actions 

o  

Model-based reflex agents 

The most effective way to handle partial observability is for the agent to keep track of the part of the 

world it can't see now. That is, the agent should maintain some sort of internal  state that depends 



on the percept history and thereby reflects at least some of the unobserved aspects of the current 

state. 

Updating this internal state information as time goes by requires two kinds of knowledge to be 

encoded in the agent program. First, we need some information about how the world evolves 

independently of the agent-for example, that an overtaking car generally will be closer behind than 

it was a moment ago. Second, we need some information about how the agent's own actions affect 

the world-for example, that when the agent turns the steering wheel clockwise, the car turns to the 

right or that after driving for five minutes northbound on the freeway one is usually about five miles 

north of where one was five minutes ago. This knowledge about "how the world working - whether 

implemented in simple Boolean circuits or in complete scientific theories-is called a model of the 

world. An agent that uses such a MODEL-BASED model is called a model-based agent. 

 

 
Figure 1.12 A model based reflex agent 

 

 

function REFLEX-AGENT-WITH-STATE(percept) returns an action 

static: rules, a set of condition-action rules 

state, a description of the current world state 

action, the most recent action. 

state  UPDATE-STATE(state, action, percept) 

rule  RULE-MATCH(state, rule) 

action  RULE-ACTION[rule] 

return action 

 

Figure 1.13 Model based reflex agent. It keeps track of the current state of the world using an internal 

model. It then chooses an action in the same way as the reflex agent. 

 

 

 

Goal-based agents 
Knowing about the current state of the environment is not always enough to decide what to do. For example, at a 

road junction, the taxi can turn left, turn right, or go straight on. The correct decision depends on where the taxi is 

trying to get to. In other words, as well as a current state description, the agent needs some sort of goal 
information that describes situations that are desirable-for example, being at the passenger's destination. The agent 

program can combine this with information about the results of possible actions (the same information as 

was used to update internal state in the reflex agent) in order to choose actions that achieve the goal. Figure 

1.13 shows the goal-based agent's structure. 



 

 

 

 

 
 

 
Figure 1.14   A goal based agent 

 

Utility-based agents 
Goals alone are not really enough to generate high-quality behavior in most environments. For 

example, there are many action sequences that will get the taxi to its destination (thereby achieving 

the goal) but some are quicker, safer, more reliable, or cheaper than others. Goals just provide a 

crude binary distinction between "happy" and "unhappy" states, whereas a more general 

performance measure should allow a comparison of different world states according to exactly 

how happy they would make the agent if they could be achieved. Because "happy" does not sound 

very scientific, the customary terminology is to say that if one world state is preferred to another, 

then it has higher utility for the agent. 

 

 
Figure 1.15  A model-based, utility-based agent. It uses a model of the world, along with 

a utility function that measures its preferences among states of the world. Then it chooses the 

action that leads to the best expected utility, where expected utility is computed by averaging 

over all possible outcome states, weighted by the probability of the outcome. 

 



 

• Certain goals can be reached in different ways. 

– Some are better, have a higher utility. 

• Utility function maps a (sequence of) state(s) onto a real number. 

• Improves on goals: 

– Selecting between conflicting goals 

– Select appropriately between several goals based on likelihood of success. 

 

 

 
Figure 1.16 A general model of learning agents. 

 

• All agents can improve their performance through learning. 

          A learning agent can be divided into four conceptual components, as shown in Figure 1.15 

The most important distinction is between the learning element, which is responsible for making 

improvements, and the performance element, which is responsible for selecting external actions. 

The performance element is what we have previously considered to be the entire agent: it takes in 

percepts and decides on actions. The learning element uses feedback from the critic on how the 

agent is doing and determines how the performance element should be modified to do better in the 

future. 

         The last component of the learning agent is the problem generator. It is responsible 

for suggesting actions that will lead to new and informative experiences. But if the agent is willing 

to explore a little,  it might discover much better actions for the long run. The problem 
generator's job is to suggest these exploratory actions. This is what scientists do when they 

carry out experiments.  

 

Summary: Intelligent Agents 
• An agent perceives and acts in an environment, has an architecture, and is implemented by 

an agent program.  

• Task environment – PEAS (Performance, Environment, Actuators, Sensors) 

• The most challenging environments are inaccessible, nondeterministic, dynamic, and 

continuous. 

• An ideal agent always chooses the action which maximizes its expected performance, given 

its percept sequence so far. 

• An agent program maps from percept to action and updates internal state.  



– Reflex agents respond immediately to percepts.  

• simple reflex agents 

• model-based reflex agents 

– Goal-based agents act in order to achieve their goal(s).  

– Utility-based agents maximize their own utility function.  

• All agents can improve their performance through learning. 

 

 


