
CS8651 : INTERNET PROGRAMMING Department of CSE

1

2020 - 2021 Jeppiaar Institute of Technology

 JEPPIAAR INSTITUTE OF TECHNOLOGY

“Self Belief | Self Discipline | Self Respect”

DEPARTMENT

OF

COMPUTER SCIENCE AND ENGINEERING

LECTURE NOTES

CS8651-INTERNET PROGRAMMING

(Regulation 2017)

Year/Semester: III / 06 CSE

2020 – 2021

Prepared by

Dr. K. Tamilarasi

Associate Professor /CSE

CS8651 : INTERNET PROGRAMMING Department of CSE

2

2020 - 2021 Jeppiaar Institute of Technology

UNIT V

INTRODUCTION TO AJAX and WEB SERVICES

AJAX: Ajax Client Server Architecture-XML Http Request Object-Call Back Methods; Web

Services: Introduction- Java web services Basics – Creating, Publishing, Testing and

Describing a Web services (WSDL)-Consuming a web service, Database Driven web

service from an application –SOAP.

5.1 AJAX: AJAX CLIENT SERVER ARCHITECTURE

 AJAX stands for Asynchronous JavaScript and XML. AJAX is a new technique for

creating better, faster, and more interactive web applications with the help of XML, HTML, CSS,

and Java Script.

 Ajax uses XHTML for content, CSS for presentation, along with Document Object Model

and JavaScript for dynamic content display.

 Conventional web applications transmit information to and from the sever using

synchronous requests. It means you fill out a form, hit submit, and get directed to a new

page with new information from the server.

 With AJAX, when you hit submit, JavaScript will make a request to the server, interpret

the results, and update the current screen. In the purest sense, the user would never

know that anything was even transmitted to the server.

 XML is commonly used as the format for receiving server data, although any format,

including plain text, can be used.

 AJAX is a web browser technology independent of web server software.

 A user can continue to use the application while the client program requests information

from the server in the background.

 Intuitive and natural user interaction. Clicking is not required, mouse movement is a

sufficient event trigger.

 Data-driven as opposed to page-driven.

How AJAX works?

 AJAX communicates with the server using XMLHttpRequest object. Let's try to

understand the flow of ajax or how ajax works by the image displayed below.

CS8651 : INTERNET PROGRAMMING Department of CSE

3

2020 - 2021 Jeppiaar Institute of Technology

Fig: 5.1 AJAX Architecture

 XMLHttpRequest object plays a important role.

1. User sends a request from the UI and a javascript call goes to XMLHttpRequest object.

2. HTTP Request is sent to the server by XMLHttpRequest object.

3. Server interacts with the database using JSP, PHP, Servlet, ASP.net etc.

4. Data is retrieved.

5. Server sends XML data or JSON data to the XMLHttpRequest callback function.

6. HTML and CSS data is displayed on the browser.

5.2 XML HTTP REQUEST OBJECT

 The XMLHttpRequest object is the key to AJAX. It has been available ever since Internet

Explorer 5.5 was released in July 2000, but was not fully discovered until AJAX and Web

2.0 in 2005 became popular.

 XMLHttpRequest (XHR) is an API that can be used by JavaScript, JScript, VBScript, and

other web browser scripting languages to transfer and manipulate XML data to and from

a webserver using HTTP, establishing an independent connection channel between a

webpage's Client-Side and Server-Side.

 The data returned from XMLHttpRequest calls will often be provided by back-end

databases. Besides XML, XMLHttpRequest can be used to fetch data in other formats,

e.g. JSON or even plain text.

 Listed below are some of the methods and properties that you have to get familiar with.

5.2.1 XMLHttpRequest Methods

 abort()-Cancels the current request.

 getAllResponseHeaders()-Returns the complete set of HTTP headers as a string.

 getResponseHeader(headerName)-Returns the value of the specified HTTP header.

CS8651 : INTERNET PROGRAMMING Department of CSE

4

2020 - 2021 Jeppiaar Institute of Technology

 open(method, URL)

 open(method, URL, async)

 open(method, URL, async, userName)

 open(method, URL, async, userName, password)

 Specifies the method, URL, and other optional attributes of a request.

 The method parameter can have a value of "GET", "POST", or "HEAD". Other HTTP

methods such as "PUT" and "DELETE" (primarily used in REST applications) may be

possible.

 The "async" parameter specifies whether the request should be handled asynchronously

or not. "true" means that the script processing carries on after the send() method without

waiting for a response, and "false" means that the script waits for a response before

continuing script processing.

 send(content)-Sends the request.

 setRequestHeader(label, value)-Adds a label/value pair to the HTTP header to be

sent.

5.2.3 XMLHttpRequest Properties

 onreadystatechange-An event handler for an event that fires at every state change.

 readyState-The readyState property defines the current state of the XMLHttpRequest

object.

The following table provides a list of the possible values for the readyState property –

State Description

0 The request is not initialized.

1 The request has been set up.

2 The request has been sent.

3 The request is in process.

4 The request is completed.

 readyState = 0 After you have created the XMLHttpRequest object, but before you have

called the open() method.

 readyState = 1 After you have called the open() method, but before you have called

send().

 readyState = 2 After you have called send().

CS8651 : INTERNET PROGRAMMING Department of CSE

5

2020 - 2021 Jeppiaar Institute of Technology

 readyState = 3 After the browser has established a communication with the server, but

before the server has completed the response.

 readyState = 4 After the request has been completed, and the response data has been

completely received from the server.

 responseText-Returns the response as a string.

 responseXML-Returns the response as XML. This property returns an XML document

object, which can be examined and parsed using the W3C DOM node tree methods and

properties.

 Status-Returns the status as a number (e.g., 404 for "Not Found" and 200 for "OK").

 Status Text-Returns the status as a string (e.g., "Not Found" or "OK").

5.3 CALL BACK METHODS

 The ajaxSuccess(callback) method attaches a function to be executed whenever an AJAX

request completes successfully. This is an Ajax Event.

Syntax

Here is the simple syntax to use this method −

$(document).ajaxSuccess(callback)

Parameters

Here is the description of all the parameters used by this method −

 callback − The function to execute. The event object, XMLHttpRequest, and settings

used for that request are passed as arguments to the callback.

Example

 Assuming we have following HTML content in result.html file −

<h1>THIS IS RESULT...</h1>

 Following is a simple example a simple showing the usage of this method.

<html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript"

 src = "https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">

 </script>

 <script type = "text/javascript" language = "javascript">

CS8651 : INTERNET PROGRAMMING Department of CSE

6

2020 - 2021 Jeppiaar Institute of Technology

 $(document).ready(function() {

 /* Global variable */

 var count = 0;

 $("#driver").click(function(event){

 $('#stage0').load('result.html');

 });

 /* Gets called when request starts */

 $(document).ajaxStart(function(){

 count++;

 $("#stage1").html("<h1>Starts, Count :" + count + "</h1>");

 });

 /* Gets called when request is sent */

 $(document).ajaxSend(function(evt, req, set){

 count++;

 $("#stage2").html("<h1>Sends, Count :" + count + "</h1>");

 $("#stage2").append("<h1>URL :" + set.url + "</h1>");

 });

 /* Gets called when request completes */

 $(document).ajaxComplete(function(event,request,settings){

 count++;

 $("#stage3").html("<h1>Completes,Count:" + count + "</h1>");

 });

 /* Gets called when request is stopped */

 $(document).ajaxStop(function(event,request,settings){

 count++;

 $("#stage4").html("<h1>Stops, Count :" + count + "</h1>");

CS8651 : INTERNET PROGRAMMING Department of CSE

7

2020 - 2021 Jeppiaar Institute of Technology

 });

 /* Gets called when all request completes successfully */

 $(document).ajaxSuccess(function(event,request,settings){

 count++;

 $("#stage5").html("<h1>Success,Count :" + count + "</h1>");

 });

 });

 </script>

 </head>

 <body>

 <p>Click on the button to load result.html file:</p>

 <div id = "stage0" style = "background-color:blue;">

 STAGE - 0

 </div>

 <div id = "stage1" style = "background-color:blue;">

 STAGE - 1

 </div>

 <div id = "stage2" style = "background-color:blue;">

 STAGE - 2

 </div>

 <div id = "stage3" style = "background-color:blue;">

 STAGE - 3

 </div>

 <div id = "stage4" style = "background-color:blue;">

 STAGE - 4

 </div>

CS8651 : INTERNET PROGRAMMING Department of CSE

8

2020 - 2021 Jeppiaar Institute of Technology

 <div id = "stage5" style = "background-color:blue;">

 STAGE - 5

 </div>

 <input type = "button" id = "driver" value="Load Data" />

 </body>

</html>

Output:

Click on the button to load result.html file −

STAGE - 0

STAGE - 1

STAGE – 2

5.4 WEB SERVICES-INTRODUCTION

 A web service is any piece of software that makes itself available over the internet and

uses a standardized XML messaging system. XML is used to encode all

communications to a web service. For example, a client invokes a web service by

sending an XML message, then waits for a corresponding XML response. As all

communication is in XML, web services are not tied to any one operating system or

programming language—Java can talk with Perl; Windows applications can talk with

Unix applications.

 Web services are self-contained, modular, distributed, dynamic applications that can be

described, published, located, or invoked over the network to create products,

processes, and supply chains. These applications can be local, distributed, or web-

based. Web services are built on top of open standards such as TCP/IP, HTTP, Java,

HTML, and XML.

 Web services are XML-based information exchange systems that use the Internet for

direct application-to-application interaction. These systems can include programs,

objects, messages, or documents.

 A web service is a collection of open protocols and standards used for exchanging data

between applications or systems. Software applications written in various programming

languages and running on various platforms can use web services to exchange data

over computer networks like the Internet in a manner similar to inter-process

communication on a single computer. This interoperability (e.g., between Java and

Python, or Windows and Linux applications) is due to the use of open standards.

CS8651 : INTERNET PROGRAMMING Department of CSE

9

2020 - 2021 Jeppiaar Institute of Technology

To summarize, a complete web service is, therefore, any service that −

 Is available over the Internet or private (intranet) networks

 Uses a standardized XML messaging system

 Is not tied to any one operating system or programming language

 Is self-describing via a common XML grammar

 Is discoverable via a simple find mechanism

Components of Web Services

The basic web services platform is XML + HTTP. All the standard web services work using the

following components −

 SOAP (Simple Object Access Protocol)

 UDDI (Universal Description, Discovery and Integration)

 WSDL (Web Services Description Language)

How Does a Web Service Work?

 A web service enables communication among various applications by using open standards

such as HTML, XML, WSDL, and SOAP. A web service takes the help of −

 XML to tag the data

 SOAP to transfer a message

 WSDL to describe the availability of service.

Example

 Consider a simple account-management and order processing system. The accounting

personnel use a client application built with Visual Basic or JSP to create new accounts and

enter new customer orders.

 The processing logic for this system is written in Java and resides on a Solaris machine,

which also interacts with a database to store information.

The steps to perform this operation are as follows −

 The client program bundles the account registration information into a SOAP message.

 This SOAP message is sent to the web service as the body of an HTTP POST request.

 The web service unpacks the SOAP request and converts it into a command that the

application can understand.

CS8651 : INTERNET PROGRAMMING Department of CSE

10

2020 - 2021 Jeppiaar Institute of Technology

 The application processes the information as required and responds with a new unique

account number for that customer.

 Next, the web service packages the response into another SOAP message, which it

sends back to the client program in response to its HTTP request.

 The client program unpacks the SOAP message to obtain the results of the account

registration process.

5.5 WSDL

 WSDL is an XML-based file which basically tells the client application what the web service

does. It is known as the Web Services Description Language(WSDL).

 The WSDL file is used to describe in a nutshell what the web service does and gives the

client all the information required to connect to the web service and use all the functionality

provided by the web service.

5.5.1 WSDL Elements

The WSDL file contains the following main parts

1. The <types> tag is used to define all the complex datatypes, which will be used in the

message exchanged between the client application and the web service. This is an

important aspect of the client application, because if the web service works with a

complex data type, then the client application should know how to process the complex

data type. Data types such as float, numbers, and strings are all simple data types, but

there could be structured data types which may be provided by the web service.

For example, there could be a data type called EmployeeDataType which could have 2

elements called "EmployeeName" of type string and "EmployeeID" of type number or integer.

Together they form a data structure which then becomes a complex data type.

2. The <messages> tag is used to define the message which is exchanged between the

client application and the web server. These messages will explain the input and output

operations which can be performed by the web service. An example of a message can

be a message which accepts the EmployeeID of an employee, and the output message

can be the name of the employee based on the EmpoyeeID provided.

3. The <portType> tag is used to encapsulate every input and output message into one

logical operation. So there could be an operation called "GetEmployee" which combines

the input message of accepting the EmployeeID from a client application and then

sending the EmployeeName as the output message.

4. The <binding> tag is used to bind the operation to the particular port type. This is so

that when the client application calls the relevant port type, it will then be able to access

the operations which are bound to this port type. Port types are just like interfaces. So if

CS8651 : INTERNET PROGRAMMING Department of CSE

11

2020 - 2021 Jeppiaar Institute of Technology

a client application needs to use a web service they need to use the binding information

to ensure that they can connect to the interface provided by that web service.

5. The <service> tag is a name given to the web service itself. Initially, when a client

application makes a call to the web service, it will do by calling the name of the web

service. For example, a web service can be located at an address such

as http://localhost/Guru99/Tutorial.asmx . The service tag will actually have the URL

defined as http://localhost/Guru99/Tutorial.asmx, which will actually tell the client

application that there is a web service available at this location.

5.5.2 WSDL Message Part

 The WSDL consists of a section called "messages" which is denoted by

the <message> element.

 This element is basically used to describe the data that gets exchanged between the

web service and the client application.

 Each web service will always have 2 types of messages,

 One is for the input of the web service, and the other is for the output of the web

service.

 The input is used to describe the parameters which are accepted by the web

service. This is an important aspect of the client application so that it knows the

values to be sent as parameters to the web service.

 The other type of message is the output message which tells what results are

provided by the web service.

 Each message, in turn, will have a <part> element which is used to describe the

parameter used by the input and output message.

 Below is a simple example, of what a message for a web service looks like. The

functionality of the web service is to provide the name of a "Tutorial" once a "Tutorial ID"

is submitted as a parameter to the web service.

Fig: 5.2 WSDL Message Part

1. As we can see the web service has 2 messages, one for the input and the other for the

output.

https://www.guru99.com/images/3-2016/032316_0742_WSDLWebserv3.png

CS8651 : INTERNET PROGRAMMING Department of CSE

12

2020 - 2021 Jeppiaar Institute of Technology

2. The input message is known as TutorialNameRequest which has one parameter called

TutorialID. This parameter is of the type number which is specified by the xsd:number

type

3. The output message is known as TutorialNameResponse which has one parameter

called TutorialName. This parameter is of the type string which is specified by the

xsd:string type

5.5.3 Creating WSDL File

 The WSDL file gets created whenever a web service is built in any programming

language.

 Since the WSDL file is pretty complicated to be generated from plain scratch, all editors

such as Visual Studio for .Net and Eclipse for Java automatically create the WSDL file.

 Below is an example of a WSDL file created in Visual Studio.

<?xml version="1.0"?>

<definitions name="Tutorial"

 targetNamespace=http://Guru99.com/Tutorial.wsdl

 xmlns:tns=http://Guru99.com/Tutorial.wsdl

 xmlns:xsd1=http://Guru99.com/Tutorial.xsd

 xmlns:soap=http://schemas.xmlsoap.org/wsdl/soap/

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>

 <schema targetNamespace=http://Guru99.com/Tutorial.xsd

 xmlns="http://www.w3.org/2000/10/XMLSchema">

 <element name="TutorialNameRequest">

 <complexType>

 <all>

 <element name="TutorialName" type="string"/>

 </all>

 </complexType>

 </element>

 <element name="TutorialIDRequest">

 <complexType>

 <all>

 <element name="TutorialID" type="number"/>

 </all>

 </complexType>

 </element>

 </schema>

 </types>

 <message name="GetTutorialNameInput">

CS8651 : INTERNET PROGRAMMING Department of CSE

13

2020 - 2021 Jeppiaar Institute of Technology

 <part name="body" element="xsd1:TutorialIDRequest"/>

 </message>

 <message name="GetTutorialNameOutput">

 <part name="body" element="xsd1:TutorialNameRequest"/>

 </message>

 <portType name="TutorialPortType">

 <operation name="GetTutorialName">

 <input message="tns:GetTutorialNameInput"/>

 <output message="tns:GetTutorialNameOutput"/>

 </operation>

 </portType>

 <binding name="TutorialSoapBinding" type="tns:TutorialPortType">

 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetTutorialName">

 <soap:operation

soapAction="http://Guru99.com/GetTutorialName"/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="TutorialService">

 <documentation>TutorialService</documentation>

 <port name="TutorialPort" binding="tns:TutorialSoapBinding">

 <soap:address location="http://Guru99.com/Tutorial"/>

 </port>

 </service>

</definitions>

5.5.4 Publishing the Web Service Example

 An example of how we can publish a web service and consume it by using Visual

Studio.

 Step 1) The first step is to create your web service. The detailed steps of how

the Asp.Net web project and a web service is created. The key part is to enter the below

code in the Web services file.

namespace webservic asmx

https://www.guru99.com/asp-net-tutorial.html

CS8651 : INTERNET PROGRAMMING Department of CSE

14

2020 - 2021 Jeppiaar Institute of Technology

{

 [WebService(Name = "Guru99 Web service")]

 public class TutorialService : System.Web.Services.WebService

 {

 [WebMethod]

 public string GetTutorialService(int TutoriallD)

 {

 string TutorialName = "Web Services";

 return TutorialName;

 }

 }

}

Fig: 5.3 creating web Service

Code Explanation:

1. Here we are creating a WebMethod called "Guru99WebService." In this web method, we

are including an integer parameter which needs to be passed whenever this web method

is called.

2. Next we are defining a variable called "TutorialName" which will hold the string value of

"Web Services." This is the value which will be returned when the web service is called.

Step 2) Once we have defined the web services file, the next step is to create a client project

which will consume this web service.

 Let's create a simple console application which will call this web service, invoke the

"Guru99WebService" and then display the output of the web method in the console log

screen. Follow the below steps to create a console application.

 Right-click the Visual Studio solution file and choose the option Add->New project

CS8651 : INTERNET PROGRAMMING Department of CSE

15

2020 - 2021 Jeppiaar Institute of Technology

 Fig 5.4 Creating a console Application

Step3) In this step,

1. Ensure to first choose the Visual C# Windows option. Then choose the option of creating

a console application.

2. Give a name for your project which in our case has been given as "DemoApplication."

Fig: 5.5 Naming the Project

 After you click the OK button in the above screen, you will be able to see the project in

the Solution explorer in Visual Studio.

https://www.guru99.com/c-sharp-tutorial.html

CS8651 : INTERNET PROGRAMMING Department of CSE

16

2020 - 2021 Jeppiaar Institute of Technology

Fig: 5.6 Displaying the Application

Step 4) In this step, you be setting the DemoApplication Console application as the startup

project. This is done to ensure that this application launches first when the entire Visual Studio

project is run. This Console application will, in turn, call the web service which will be

automatically launched by Visual Studio.

 To complete this step, right-click the DemoApplication project and choose the option

"Set as StartUp Project."

Fig: 5.7 Start the New Project

Step 5) The next step is to add the service reference of our "Guru99Webservice" to our console

application. This is done so that the DemoApplication can reference the web service and all of

the web methods in the web service.

 To do this, right-click the DemoApplication project file and choose the menu option Add-

>Service Reference.

https://www.guru99.com/images/3-2016/032316_0742_WSDLWebserv9.png

CS8651 : INTERNET PROGRAMMING Department of CSE

17

2020 - 2021 Jeppiaar Institute of Technology

Fig: 5.8 Add the Service Reference

Step 6) In this step, we will provide the different values which are required to add our service

reference

1. Firstly we need to choose our discover option. This option will automatically pick up the

WSDL file for our TutorialService web service.

2. Next, we should give a name for our service reference. In our case, we are giving it a

name of Guru99Webservice.

3. Then we need to expand on the TutorialService.asmx option so that we can have the

ability to see the 'GetTutorialService' method on the right-hand side. Here

TutorialService.asmx is the name of our Visual Studio .Net file which contains the code

for our web service.

4. We will then see our Web method which we had in our web service known as

"GetTutorialService"

Fig: 5.9 Displaying the Web Service Reference

CS8651 : INTERNET PROGRAMMING Department of CSE

18

2020 - 2021 Jeppiaar Institute of Technology

 When we click on the 'OK' button, all of the required code to access this web service will

be added to our DemoApplication Console application as shown below.

 The screenshot shows that the "Guru99Webservice" was successfully added to our

console application.

Fig: 5.10 Web reference added to Project

Step 7) The next step is to add the code to our console application to access the web method in

our web service. Open the Program.cs code file which comes automatically with the console

application and add the below code

Fig: 5.11 Call the web service

namespace DemoApplication

{

 class Program

 {

 static void Main(string[] args)

 {

 var client = new

Guru99Webservice.Guru99WebserviceSoapClient();

https://www.guru99.com/images/3-2016/032316_0742_WSDLWebserv13.png

CS8651 : INTERNET PROGRAMMING Department of CSE

19

2020 - 2021 Jeppiaar Institute of Technology

 Console.WriteLine(client.GetTutorialService(l));

 Console.ReadKey();

 }

 }

}

Code Explanation:-

1. The first part is to choose the Program.cs file. This is the main file which is created by

Visual Studio when a console application is created. This file is what gets executed

when the console application (in our case demo application) is executed.

2. We then create a variable called "client" which will be set to an instance of our Service

reference which was created in an earlier step. In our case, the service reference is

'Guru99Webservice.Guru99WebserviveSoapClient()'

3. We are then calling our Webmethod 'GetTutorialService' in the TutorialService web

service Remember that our GetTutorialService' method accepts an integer parameter,

so we are just passing an integer parameter to the web method.

4. This final line is just to ensure the console log screen remains active so that we can view

the output. This command will just wait for some input from the user.

Output

 When all of the above steps are followed, and the DemoApplication is run the below

output will be displayed.

Fig: 5.11 WSDL Output

 From the output, we can clearly see that the DemoApplication calls our Web service and

that the string returned by the Web service is displayed in our Console log.

5.6 SOAP

https://www.guru99.com/images/3-2016/032316_0742_WSDLWebserv15.png

CS8651 : INTERNET PROGRAMMING Department of CSE

20

2020 - 2021 Jeppiaar Institute of Technology

 SOAP is an acronym for Simple Object Access Protocol. It is an XML-

based messaging protocol for exchanging information among computers. SOAP is an

application of the XML specification.

 SOAP is a communication protocol designed to communicate via Internet.

 SOAP can extend HTTP for XML messaging.

 SOAP provides data transport for Web services.

 SOAP can exchange complete documents or call a remote procedure.

 SOAP can be used for broadcasting a message.

 SOAP is platform- and language-independent.

 SOAP is the XML way of defining what information is sent and how.

 SOAP enables client applications to easily connect to remote services and invoke

remote methods.

 Although SOAP can be used in a variety of messaging systems and can be delivered via

a variety of transport protocols, the initial focus of SOAP is remote procedure calls

transported via HTTP.

 Other frameworks including CORBA, DCOM, and Java RMI provide similar functionality

to SOAP, but SOAP messages are written entirely in XML and are therefore uniquely

platform- and language-independent.

5.6.1 SOAP Message Structure

A SOAP message is an ordinary XML document containing the following elements −

 Envelope − Defines the start and the end of the message. It is a mandatory element.

 Header − Contains any optional attributes of the message used in processing the

message, either at an intermediary point or at the ultimate end-point. It is an optional

element.

 Body − Contains the XML data comprising the message being sent. It is a mandatory

element.

 Fault − An optional Fault element that provides information about errors that occur while

processing the message.

 The following block depicts the general structure of a SOAP message –

<?xml version = "1.0"?>

CS8651 : INTERNET PROGRAMMING Department of CSE

21

2020 - 2021 Jeppiaar Institute of Technology

<SOAP-ENV:Envelope xmlns:SOAP-ENV =

"http://www.w3.org/2001/12/soap-envelope"

 SOAP-ENV:encodingStyle = "http://www.w3.org/2001/12/soap-

encoding">

 <SOAP-ENV:Header>

 ...

 ...

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 ...

 ...

 <SOAP-ENV:Fault>

 ...

 ...

 </SOAP-ENV:Fault>

 ...

 </SOAP-ENV:Body>

</SOAP_ENV:Envelope>

5.6.2 SOAP-Envelope

 The SOAP envelope indicates the start and the end of the message so

that the receiver knows when an entire message has been received. The SOAP envelope solves

the problem of knowing when you are done receiving a message and are ready to process it.

The SOAP envelope is therefore basically a packaging mechanism.

 Every SOAP message has a root Envelope element.

 Envelope is a mandatory part of SOAP message.

 Every Envelope element must contain exactly one Body element.

 If an Envelope contains a Header element, it must contain no more than one, and it must

appear as the first child of the Envelope, before the Body.

 The envelope changes when SOAP versions change.

 The SOAP envelope is specified using the ENV namespace prefix and the Envelope

element.

 The optional SOAP encoding is also specified using a namespace name and the

optional encodingStyle element, which could also point to an encoding style other than

the SOAP one.

 A v1.1-compliant SOAP processor generates a fault upon receiving a message

containing the v1.2 envelope namespace.

 A v1.2-compliant SOAP processor generates a VersionMismatch fault if it receives a

message that does not include the v1.2 envelope namespace.

CS8651 : INTERNET PROGRAMMING Department of CSE

22

2020 - 2021 Jeppiaar Institute of Technology

V1.2-Compliant SOAP Message

<?xml version = "1.0"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = "http://www.w3.org/2001/12/soap-envelope"

 SOAP-ENV:encodingStyle = " http://www.w3.org/2001/12/soap-encoding">

 ...

 Message information goes here

 ...

</SOAP-ENV:Envelope>

SOAP with HTTP POST

o The following example illustrates the use of a SOAP message within an HTTP

POST operation, which sends the message to the server.

o It shows the namespaces for the envelope schema definition and for the schema

definition of the encoding rules. T

o he OrderEntry reference in the HTTP header is the name of the program to be

invoked at the tutorialspoint.com website.

POST /OrderEntry HTTP/1.1

Host: www.tutorialspoint.com

Content-Type: application/soap; charset="utf-8"

Content-Length: nnnn

<?xml version = "1.0"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = "http://www.w3.org/2001/12/soap-envelope"

 SOAP-ENV:encodingStyle = " http://www.w3.org/2001/12/soap-encoding">

 ...

 Message information goes here

 ...

</SOAP-ENV:Envelope>

5.6.3 SOAP-Header

 The optional Header element offers a flexible framework for specifying additional

application-level requirements. For example, the Header element can be used to specify

a digital signature for password-protected services. Likewise, it can be used to specify

an account number for pay-per-use SOAP services.

 It is an optional part of a SOAP message.

 Header elements can occur multiple times.

 Headers are intended to add new features and functionality.

 The SOAP header contains header entries defined in a namespace.

CS8651 : INTERNET PROGRAMMING Department of CSE

23

2020 - 2021 Jeppiaar Institute of Technology

 The header is encoded as the first immediate child element of the SOAP envelope.

 When multiple headers are defined, all immediate child elements of the SOAP header

are interpreted as SOAP header blocks.

SOAP Header Attributes

 A SOAP Header can have the following two attributes −

Actor attribute

 The SOAP protocol defines a message path as a list of SOAP service nodes.

 Each of these intermediate nodes can perform some processing and then forward the

message to the next node in the chain.

 By setting the Actor attribute, the client can specify the recipient of the SOAP header.

MustUnderstand attribute

 It indicates whether a Header element is optional or mandatory. If set to true, the

recipient must understand and process the Header attribute according to its defined

semantics, or return a fault.

 The following example shows how to use a Header in a SOAP message.

<?xml version = "1.0"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = " http://www.w3.org/2001/12/soap-envelope"

 SOAP-ENV:encodingStyle = " http://www.w3.org/2001/12/soap-

encoding">

 <SOAP-ENV:Header>

 <t:Transaction

 xmlns:t = "http://www.tutorialspoint.com/transaction/"

 SOAP-ENV:mustUnderstand = "true">5

 </t:Transaction>

 </SOAP-ENV:Header>

 ...

 ...

</SOAP-ENV:Envelope>

5.6.4 SOAP-Body

 The SOAP body is a mandatory element that contains the application-defined XML data

being exchanged in the SOAP message. The body must be contained within the

envelope and must follow any headers that might be defined for the message.

 The body is defined as a child element of the envelope, and the semantics for the body

are defined in the associated SOAP schema.

CS8651 : INTERNET PROGRAMMING Department of CSE

24

2020 - 2021 Jeppiaar Institute of Technology

 The body contains mandatory information intended for the ultimate receiver of the

message. For example −

<?xml version = "1.0"?>

<SOAP-ENV:Envelope>

 <SOAP-ENV:Body>

 <m:GetQuotation xmlns:m = "http://www.tp.com/Quotation">

 <m:Item>Computers</m:Item>

 </m:GetQuotation>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 The example above requests a quotation of computer sets. Note that the

m:GetQuotation and the Item elements above are application-specific elements. They

are not a part of the SOAP standard.

 Here is the response to the above query −

<?xml version = "1.0"?>

<SOAP-ENV:Envelope>

 <SOAP-ENV:Body>

 <m:GetQuotationResponse xmlns:m =

"http://www.tp.com/Quotation">

 <m:Quotation>This is Qutation</m:Quotation>

 </m:GetQuotationResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 Normally, the application also defines a schema to contain semantics associated with

the request and response elements.

 The Quotation service might be implemented using an EJB running in an application

server; if so, the SOAP processor would be responsible for mapping the body

information as parameters into and out of the EJB implementation of

the GetQuotationResponse service. The SOAP processor could also be mapping the

body information to a .NET object, a CORBA object, a COBOL program, and so on.

5.6.5 SOAP-Fault

 If an error occurs during processing, the response to a SOAP message is a SOAP fault

element in the body of the message, and the fault is returned to the sender of the SOAP

message.

CS8651 : INTERNET PROGRAMMING Department of CSE

25

2020 - 2021 Jeppiaar Institute of Technology

 The SOAP fault mechanism returns specific information about the error, including a

predefined code, a description, and the address of the SOAP processor that generated

the fault.

 A SOAP message can carry only one fault block.

 Fault is an optional part of a SOAP message.

 For HTTP binding, a successful response is linked to the 200 to 299 range of status

codes.

 SOAP Fault is linked to the 500 to 599 range of status codes.

Sub-elements of Fault

The SOAP Fault has the following sub elements –

Sr.No Sub-element & Description

1

<faultCode>

It is a text code used to indicate a class of errors. See the next Table for a listing of

predefined fault codes.

2

<faultString>

It is a text message explaining the error.

3

<faultActor>

It is a text string indicating who caused the fault. It is useful if the SOAP message travels

through several nodes in the SOAP message path, and the client needs to know which

node caused the error. A node that does not act as the ultimate destination must include a

faultActor element.

4

<detail>
It is an element used to carry application-specific error messages. The detail element can
contain child elements called detail entries.

SOAP Fault Codes

The faultCode values defined below must be used in the faultcode element while describing

faults.

Sr.No Error & Description

1

SOAP-ENV:VersionMismatch

Found an invalid namespace for the SOAP Envelope element.

2

SOAP-ENV:MustUnderstand

An immediate child element of the Header element, with the mustUnderstand attribute

set to "1", was not understood.

3
SOAP-ENV:Client

The message was incorrectly formed or contained incorrect information.

4 SOAP-ENV:Server

CS8651 : INTERNET PROGRAMMING Department of CSE

26

2020 - 2021 Jeppiaar Institute of Technology

There was a problem with the server, so the message could not proceed

SOAP Fault Example

 The following code is a sample Fault. The client has requested a method

named ValidateCreditCard, but the service does not support such a method. This represents a

client request error, and the server returns the following SOAP response −

<?xml version = '1.0' encoding = 'UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = "http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi = "http://www.w3.org/1999/XMLSchema-instance"

 xmlns:xsd = "http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>

 <SOAP-ENV:Fault>

 <faultcode xsi:type = "xsd:string">SOAP-ENV:Client</faultcode>

 <faultstring xsi:type = "xsd:string">

 Failed to locate method (ValidateCreditCard) in class (examplesCreditCard) at

 /usr/local/ActivePerl-5.6/lib/site_perl/5.6.0/SOAP/Lite.pm line 1555.

 </faultstring>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

5.6.7 SOAP-Encoding

 SOAP includes a built-in set of rules for encoding data types. It enables the

SOAP message to indicate specific data types, such as integers, floats, doubles, or

arrays.

 SOAP data types are divided into two broad categories − scalar types and

compound types.

 Scalar types contain exactly one value such as a last name, price, or product

description.

 Compound types contain multiple values such as a purchase order or a list of

stock quotes.

 Compound types are further subdivided into arrays and structs.

 The encoding style for a SOAP message is set via the SOAP-

ENV:encodingStyle attribute.

 To use SOAP 1.1 encoding, use the

value http://schemas.xmlsoap.org/soap/encoding/

http://schemas.xmlsoap.org/soap/encoding/

CS8651 : INTERNET PROGRAMMING Department of CSE

27

2020 - 2021 Jeppiaar Institute of Technology

 To use SOAP 1.2 encoding, use the value http://www.w3.org/2001/12/soap-

encoding

 Latest SOAP specification adopts all the built-in types defined by XML Schema.

Still, SOAP maintains its own convention for defining constructs not

standardized by XML Schema, such as arrays and references.

Scalar Types

 For scalar types, SOAP adopts all the built-in simple types specified by the XML

Schema specification. This includes strings, floats, doubles, and integers.

 The following table lists the main simple types, excerpted from the XML Schema Part 0

− Primer http://www.w3.org/TR/2000/WD-xmlschema-0-20000407/

 For example, here is a SOAP response with a double data type –

Simple Types Built-In to XML Schema

Simple Type Example

string Confirm this is electric.

boolean true, false, 1, 0.

float
-INF, -1E4, -0, 0,

12.78E-2, 12, INF,
NaN.

double
-INF, -1E4, -0, 0,

12.78E-2, 12, INF,
NaN.

decimal
-1.23, 0, 123.4,

1000.00.

binary 100010

integer
-126789, -1, 0, 1,

126789.

<?xml version = '1.0' encoding = 'UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = "http://www.w3.org/2001/12/soap-envelope"

 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:getPriceResponse

http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/TR/2000/WD-xmlschema-0-20000407/

CS8651 : INTERNET PROGRAMMING Department of CSE

28

2020 - 2021 Jeppiaar Institute of Technology

 xmlns:ns1 = "urn:examples:priceservice"

 SOAP-ENV:encodingStyle = "http://www.w3.org/2001/12/soap-

encoding">

 <return xsi:type = "xsd:double">54.99</return>

 </ns1:getPriceResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Compound Types

 SOAP arrays have a very specific set of rules, which require that you specify both the

element type and array size. SOAP also supports multidimensional arrays, but not all

SOAP implementations support multidimensional functionality.

 To create an array, you must specify it as an xsi:type of array. The array must also

include an arrayType attribute. This attribute is required to specify the data type for the

contained elements and the dimension(s) of the array.

 For example, the following attribute specifies an array of 10 double values −

arrayType = "xsd:double[10]"

 In contrast, the following attribute specifies a two-dimensional array of strings −

arrayType = "xsd:string[5,5]"

 Here is a sample SOAP response with an array of double values −

<?xml version = '1.0' encoding = 'UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = "http://www.w3.org/2001/12/soap-envelope"

 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:getPriceListResponse

 xmlns:ns1 = "urn:examples:pricelistservice"

 SOAP-ENV:encodingStyle = "http://www.w3.org/2001/12/soap-

encoding">

 <return xmlns:ns2 = "http://www.w3.org/2001/09/soap-encoding"

 xsi:type = "ns2:Array" ns2:arrayType = "xsd:double[2]">

 <item xsi:type = "xsd:double">54.99</item>

 <item xsi:type = "xsd:double">19.99</item>

 </return>

 </ns1:getPriceListResponse>

 </SOAP-ENV:Body>

CS8651 : INTERNET PROGRAMMING Department of CSE

29

2020 - 2021 Jeppiaar Institute of Technology

</SOAP-ENV:Envelope>

 Structs contain multiple values, but each element is specified with a unique accessor

element. For example, consider an item within a product catalog. In this case, the struct

might contain a product SKU, product name, description, and price. Here is how such a

struct would be represented in a SOAP message −

<?xml version = '1.0' encoding = 'UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = "http://www.w3.org/2001/12/soap-envelope"

 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:getProductResponse

 xmlns:ns1 = "urn:examples:productservice"

 SOAP-ENV:encodingStyle = "http://www.w3.org/2001/12/soap-

encoding">

 <return xmlns:ns2 = "urn:examples" xsi:type = "ns2:product">

 <name xsi:type = "xsd:string">Red Hat Linux</name>

 <price xsi:type = "xsd:double">54.99</price>

 <description xsi:type = "xsd:string">

 Red Hat Linux Operating System

 </description>

 <SKU xsi:type = "xsd:string">A358185</SKU>

 </return>

 </ns1:getProductResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

5.6.8 SOAP-Transport

 SOAP is not tied to any transport protocol. SOAP can be transported via SMTP, FTP,

IBM's MQSeries, or Microsoft Message Queuing (MSMQ).

 SOAP specification includes details on HTTP only. HTTP remains the most popular

SOAP transport protocol.

SOAP via HTTP

 Quite logically, SOAP requests are sent via an HTTP request and SOAP responses are

returned within the content of the HTTP response. While SOAP requests can be sent

via an HTTP GET, the specification includes details on HTTP POST only.

CS8651 : INTERNET PROGRAMMING Department of CSE

30

2020 - 2021 Jeppiaar Institute of Technology

 Additionally, both HTTP requests and responses are required to set their content type to

text/xml.

 The SOAP specification mandates that the client must provide a SOAPAction

header, but the actual value of the SOAPAction header is dependent on the SOAP

server implementation.

 For example, to access the AltaVista BabelFish Translation service, hosted by

XMethods, you must specify the following as a SOAPAction header.

urn:xmethodsBabelFish#BabelFish

 Even if the server does not require a full SOAPAction header, the client must specify an

empty string ("") or a null value. For example −

SOAPAction: ""

SOAPAction:

 Here is a sample request sent via HTTP to the XMethods Babelfish Translation service

−

POST /perl/soaplite.cgi HTTP/1.0

Host: services.xmethods.com

Content-Type: text/xml; charset = utf-8

Content-Length: 538

SOAPAction: "urn:xmethodsBabelFish#BabelFish"

<?xml version = '1.0' encoding = 'UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = "http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi = "http://www.w3.org/1999/XMLSchema-instance"

 xmlns:xsd = "http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:BabelFish

 xmlns:ns1 = "urn:xmethodsBabelFish"

 SOAP-ENV:encodingStyle =

"http://schemas.xmlsoap.org/soap/encoding/">

 <translationmode xsi:type =

"xsd:string">en_fr</translationmode>

 <sourcedata xsi:type = "xsd:string">Hello,

world!</sourcedata>

 </ns1:BabelFish>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

CS8651 : INTERNET PROGRAMMING Department of CSE

31

2020 - 2021 Jeppiaar Institute of Technology

 Note the content type and the SOAPAction header. Also note that the BabelFish method

requires two String parameters. The translation mode en_fr translates from English to

French.Here is the response from XMethods −

HTTP/1.1 200 OK

Date: Sat, 09 Jun 2001 15:01:55 GMT

Server: Apache/1.3.14 (Unix) tomcat/1.0 PHP/4.0.1pl2

SOAPServer: SOAP::Lite/Perl/0.50

Cache-Control: s-maxage = 60, proxy-revalidate

Content-Length: 539

Content-Type: text/xml

<?xml version = "1.0" encoding = "UTF-8"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENC = "http://schemas.xmlsoap.org/soap/encoding/"

 SOAP-ENV:encodingStyle =

"http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsi = "http://www.w3.org/1999/XMLSchema-instance"

 xmlns:SOAP-ENV = "http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd = "http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>

 <namesp1:BabelFishResponse xmlns:namesp1 =

"urn:xmethodsBabelFish">

 <return xsi:type = "xsd:string">Bonjour, monde!</return>

 </namesp1:BabelFishResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 SOAP responses delivered via HTTP are required to follow the same HTTP status

codes. For example, a status code of 200 OK indicates a successful response. A status

code of 500 Internal Server Error indicates that there is a server error and that the

SOAP response includes a Fault element.

PART A QUESTIONS & ANSWERS

