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1. Conductors  
Experimental measurements showed that the metals and their alloys exhibit large electrical 

conductivity in the order of 10 Ω m . Hence they are known as conductors Conducting materials are 

the materials having high electrical and thermal conductivities. Low resistive materials are also 

generally known as conducting materials. 

 

Free Electrons 

In a solid, due to the boundaries of neighboring atoms overlap each other, the valence electrons 
find continuity from atom to atom. Therefore, they can move easily throughout the solid. All such 

valence electrons of its constituent atoms in a solid are called free electrons.  
   
Current Density (J) 

Current density (J) is defined as the current per unit area of cross section of an imaginary plane hold 

normal to the direction of flow of current in a current carrying conductor. 

 

2. CONDUCTING MATERIALS  
     Conducting materials are classified in to three major categories based on the conductivity. 

(i) Zero resistive materials  (ii) Low resistive materials (iii) High resistive materials 

 

(i) Zero resistive materials 
  
The super conductors like alloys of aluminium, zinc, gallium, niobium, etc., are a special class of 
materials. These materials conduct electricity almost with zero resistance blow transition temperature. 
Thus, they are called zero resistive materials. 

 

These materials are used for saving energy in the power systems, super conducting magnets, 
memory storage elements etc., 

 

(ii) Low resistive materials  
 

The metals like silver, aluminium and alloys have high electrical conductivity. These materials 
are called low resistive materials. 

They are used as conductors, electrical conduct etc., in electrical devices and electrical power 

transmission and distribution, winding wires in motors and transformers.  
 

(iii) High resistive materials 

The materials like tungsten, platinum, nichrome etc., have high resistive and low temperature 
co-efficient of resistance. These materials are called high resistive materials. 

Such a metals and alloys are used in the manufacturing of resistors, heating elements, 
resistance thermometers. 
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The conducting properties of solid do not depend on the total number of the electrons available 

because only the valance electrons of the atoms take part in the conduction. When these valance 

electrons detached from the orbit they are called free electrons or conduction electrons. 

 

In a metal, the number of free electrons available is proportional to its electrical conductivity. 
Hence, electronic structure of a metal determines its electrical conductivity. 
 
 
3. ELECTRON THEORY OF SOLIDS 

 

We know that the electrons in the outermost orbit of the atom determine the electrical 

properties in the solid. The free electron theory of solids explains the structure and properties of solids 

through their electronic structure. 

 

This theory is applicable to all solids, both metals and non metals. It explains 
 

(i). The behavior of conductors, semiconductors, and insulators.  
(ii). The  electrical, thermal and magnetic properties of solids. 
 

So far three electron theories have been proposed. 

 

(i). Classical free electron theory  
It is a macroscopic theory, proposed by Drude and Lorentz in1900. According to this theory, 

the free electrons are mainly responsible for electrical conduction in metals. This theory obeys laws of 

classical mechanics. 

 

(ii). Quantum free electron theory  
It is a microscopic theory, proposed by sommerfeld in 1928. According to this theory, the 

electrons in a metals move in a constant potential. This theory obeys laws of quantum mechanics.  

 

(iii). Zone theory or band theory of solids 

Bloch proposed this theory in the year 1928. According to this theory, the free electrons move in a 

periodic potential. This theory explains electrical conductivity based on the energy bands. 

 

4. CLASSICAL FREE ELECTRON MODEL  
 

Explanation 

 

We know that an atom consists of a central nucleus with positive charge surrounded by the electrons 
of negative charge. The electros in the inner shells are called core electros and those in the outermost 
shell are called valence electrons. 
 

4.1. DRUDE LORENTZ THEORY 

 

Principle 

 

According to this theory, a metal consists of a very large number of free electrons. These free 
electrons can move freely throughout the volume of the metal. They are fully responsible for the 

electrical conduction in the metal. 

  

 
 

 

 

 



 

 

 POSTULATES OF FREE ELECTRON THEORY  
 

Drude assumed that the free electrons in a metal form an electron gas. These free electrons 

move randomly in all possible directions just like the gas molecules in a container. 

 

In the absence of electrical field  
When an electrical field is not applied, the free electrons move everywhere in a random manner. They 

collide with other free electrons and positive ion core. This collision is known as elastic collision. 

 

 
 

In the presence of electric field  
When the electrical field is applied, the electrons get some amount of energy from the applied electric 
field and they begin to move towards the positive potential. (In the opposite direction to the applied 

electric field). 

 
 
 
Since electrons are assumed to be a perfect gas, they obey the laws of kinetic theory of gases.  
Drift velocity (v d)  
It is defined as the average velocity acquired by the free electrons in a metal in a particular direction 

by the application of an electrical field. Mean free path (λ) 

 

The average distance travelled by a free electron between any two successive collisions in the 
presence of an applied electric field is known as mean free path. It is the product of drift velocity of 

free electron and collision time.  

 
Collision time ( ι c)  
The average time taken by a free electron between any two successive collisions is known as collision 
time. It is expressed mathematically as 

 

 
Relaxation time (ι)  
The average time taken by a free electron to reach its equilibrium position from its disturbed position 

due to the application of an external electrical field is called relaxation time. It is approximately equal 
to 10-14 second. 
 
 



 

 

 
4.3 DERIVATION OF ELECTRICAL CONDUCTIVITY Definition  
The amount of electrical charge conducted (Q) per unit time across unit area (A) of a solid given by  
σ = Q / tAE 

If t = 1second E = 1 volt, A = 1 metre 2 
 

σ =  Q  
σ = Q / tAE = J / E  
Where J is the current density and it is given by Q / tA. Also J = σ E ( according to ohm’s law ) 
  
Expression for electrical conductivity 

 

We know in the absence of external electric field, the motion of electrons in a metal moves 

randomly in all directions. When electric fi rod, the electron moves in opposite direction to the 

applied field with velocity v d. this velocity is known as drift velocity. 

 

  
 
Lorentz force acting on the electron F = eE --- (1)  
This force is known as driving of the electron. Due to this force, the electron gains acceleration ‘a’. 
From motion, the Newton’s force second law of  
F= ma --- (2) 

From equations 1 & 2 

ma = eE(or)  
a = eE / m -- (3) 

The acceleration of electron is given by 

 

Acceleration (a) = Drift velocity (v d) / Relaxation time (τ)  
a = v d / τ 

v d =  a τ  
Substituting equation (3) in( 4) 

 

v d   =[ e τ / m ] E ---(5)  
Where ‘σ’ is the electrical conductivity of velocity is given as J = ne v d --(6)  
Substituting equation (5)in (7), we have 
 
 

J = ne [e τ / m] E ---(7) 
 
From microscopic form of Ohm’s law, the current density ‘J’ is expressed as,  
J = σ E ---(9)  

On comparing equations (8) & (9) , we have Electrical conductivity σ = ne2 τ / m*  



 

 

From equation (10), we know that with increase of electron concentration ‘n’ , the conductivity ‘σ’ 
increases. As m* increases, the motion of electron becomes slow and the electrical conductivity.   
 

4.4. THERMAL CONDUCTIVITY 

 

Definition  
It is defined as the amount of heat flowing per unit time through the material having unit area 

of cross section per unit temperature gradient. 

 

ie)., Q = K dT/ dx 

 

Thermal conductivity of the material  
K = Q / dT/dx 

 

Q –Amount of heat flowing per unit time through unit cross sectional area 

 

dT/dx –Temperature gradient. 

 

Expression for thermal conductivity 

 

Let us consider a uniform rod AB with temperatures T1 (Hot) at end A and T2 (cold) at end B. Heat 
flows from hot end A to the hold end B. Let us consider cross sectional area C which is at a distance 

equal to the mean free path (λ) of t in fig. 

 

 

 

 

The conduction electron per unit value is n and average velocity of these electrons is v. 

 

During the movement of electrons in the rod, the collision takes place. Hence, the electrons near A 
lose their kinetic energy while electrons near B gain kinetic energy. 

 
  

At A, average kinetic energy of en electron = 3/2 kT--------------- (1) 

Where k- Boltzmann’s  constant and  T  is  temperature  

At B average kinetic energy of the electron = 3/2 k (T –dT) ------------- (2) 

The excess of kinetic energy carried by the electron from A to B  

= 3/2 kT - 3/2 k (T –dT)   

= 3/2 kT - 3/2 kT + 3/2 k dT -----------

- (3)   
Number of electrons crossing per unit area per unit time from A to B = 1/6 nv.  
The excess of energy carried from A to B per unit area in unit time  

= 1/6 nv X 3/2 kdT 

= 1/4 n v k dT --------------- (4) 

 



 

 

Similarly, the deficient of energy carried from B to A per unit area per unit time 

 

= -1/4 n v kdT --------------- (5) 

 

Hence, the net amount of energy transferred from A to B per unit area per unit time 

 

Q =1/4 nvkdT –(-1/4 nvkdT ) 

 

Q = 1/4 nvkdT + 1/4 nvkdT 

 

Q = 1/2 nvkdT -------------- (6) 

 

But from the basic definition of thermal conductivity, the amount of heat conducted per unit area per 

unit time Q = K dT/ λ 

 

[Q=KdT/dx ; λ=dx] 

K = ½ nv k λ              (7)  
We know that for the metals 

Relaxation time = collision time 

 

τ = τ c = λ / v 
 
τ v = λ  ---(8)  
Substituting equation 8 in the equation 7, we have K = ½ n v k τ v  
K = ½ n v2 k τ ---(9) 
 
5.  WIDEMANN –FRANZ LAW  
 

Statement 

 

It states that for the metals, the ratio of thermal conductivity to electrical conductivity is 
directly proportional to the absolute temperature. This ratio is a constant for all metals at given 

temperature.  
 

K / σ ∞ T 

                         Or 

 

Where L is a proportionality constant. It is known as Lorentz number. Its value is 2.44 X 10-8 
 
        WΩK at T = 293 K. 

 

Derivation 

 

Widemann –Frantz law is derived from the expressions of thermal conductivity and electrical 
conductivity of metal. 

 

We know that, 

Electrical conductivity of a metal σ = ne2τ / m ------ (1) 

Thermal conductivity of a metal K = ½ n v2k τ ------ (2)  
Thermal conductivity = ½ n v2 k τ 

Electrical conductivity = ne2 τ / m 

K / σ = ½  mv2  k / e2 ---------- (3) 

We know that the kinetic energy of an electron  
Or ½  mv2 = 3/2 kT --------- (4) 

Substituting equation 4 in equation 3, we have  



 

 

K / σ = 3/2 kT X k / e2  
= 3/2 [k/e] 2 T 

K / σ = LT ------------ (5)  
where L = 3/2 [k/e] 2 is a constant and it is known as Lorentz number K / σ = αT ------(6) 
 
 

Thus it is proved that, the ratio of thermal conductivity to electrical conductivity of a metal is 

directly proportional to the absolute temperature of the metal. 

 

Conclusion 

 

Wiedamann –Franz law clearly shows that if a metal has high thermal conductivity, it will 
also have high electrical conductivity.  
 
 
 

6. LORENTZ NUMBER  
 

The ratio of thermal conductivity (K) of of the metal and absolute temperature (T) of the 
metal is a constant. It is known as Lorentz number 

 

and it is given by 

 

                                                             L =K/σ 

  

7.  MERITS OF CLASSICAL FREE ELECTRTON THEORY 

 

        1. It is used to verify Ohm’s Law.  
2. The electrical and Thermal conductivities of metals can be explained by  

                  this theory.  
3. It is used to derive Wiedemann- Franz law. 

4. It is used to explain the optical properties of metals. 

 
 
8.  DRAWBACKS OF CLASSICAL FREE ELECTRON THEORY 

 

It is a macroscopic theory 

 

Classical theory states that all free electrons will absorb energy, but quantum theory states that only 

few electrons will absorb energy. 
 
This theory cannot explain the Compton effect, photoelectric effect, paramagnetism, ferromagnetism 
etc., 

 

The theoretical and experimental values of specific heat and electronic specific heat are not matched.  
 

The Lorentz number by classical theory does not have good agreement with experimental value and it 
is rectified by quantum theory. 

 

9.  QUANTUM THEORY  
 

The drawbacks of classical theory can be rectified using quantum theory. In classical theory 

the properties of metals such as electrical and thermal conductivities are well explained on the 

assumption that the electrons in the metal freely moves like the particles of gas and hence called free 

electron gas. 



 

 

 

According to classical theory, the particles of gas (electrons) at zero Kelvin will have zero kinetic 

energy, and hence all the particles are at rest. But according to quantum theory when all particles at 
rest, all of them should be filled only in the ground state energy level, which is impossible and is 

controversial to the pauli’s exclusion principle. 

 

Thus in order to fill the electrons in a given energy level, we should know the following. Energy 
distribution of electrons Number of available energy states Number of filled energy states 
 

Probability of filling an electron in a given energy state, etc., 

 

 

10.  FERMI DIRAC DISTRIBUTION FUNCTION 

 

The classical and quantum free electron theories failed to explain many electrical and thermal 

properties of solids. However, these properties can be easily understood using Fermi –Dirac statistics. 

 

Fermi –Dirac statistics deals with the particles having half integral spin. The particles like 

electrons are the examples of half integral spin and hence they are known as Fermi particles or 

Fermions. 
 
Definition 

 

The expression which gives the distributions of electrons among the various energy levels as a 

function of temperature is known as Fermi distribution function. It is the probability function F(E) of 
an electron occupying given energy level at absolute temperature. It is given by 

 

 

  
 
Where 

E –Energy of the level whose occupancy is being considered 

EF –Energy of the Fermi level 

K –Boltzmann’s constant 

T –Absolute temperature 

 

The probability value of F(E) lies between 0 and 1. If F(E) = 1, the energy level is occupied by 
an electron. If F(E) = 0, the energy level is vacant. If F(E) =  
½ or 0 .5 then there is a 50% chance for the electron occupying in that energy level. 

 

Effect of temperature on Fermi function 

 

The effect of temperature on Fermi function F(E) can be discussed with respect to equation 1. 

 

1. At 0 kelvin 

 

At 0 kelvin, the electron can be filled only upto a maximum energy level called Fermi energy level 

(EF0), above EF0 all the energy levels will be empty. It can be proved from the following conditions.  

 

When E<EF, equation 1 becomes 
 
  



 

 

 
 
 
 
 
 
(i.e 100% chance for the electron to be filled within the Fermi energy level) 
 
 
 
When E>EF, equation 1 becomes 

 

  
 
 

 

(i.e zero% chance for the electron not to be filled within the Fermi energy level)  
 

When E = EF, equation 1 becomes 

 

 
  
 
(i.e 50% chance for the electron to be filled within the Fermi energy level) 

 

This clearly shows that at 0 kelvin all the energy states below EF0 are filled and all those 
above it are empty.  
The Fermi function at 0 kelvin can also be represented graphically as shown in fig .  

 

 
 

 

Fermi energy and its importance Fermi energy level 

 

Fermi energy level is the maximum energy level upto which the electron can be filled at ok. 
Importance: 
 

 

Thus it act as a reference level which separates the vacant and filled energy states at 0k. It gives the 

information about the filled electron states and the empty states. 

 



 

 

At 0k, blow Fermi energy level electrons are filled and above Fermi energy level it will be empty. 

 

When the temperature is increased, few electrons gains thermal energy and it goes to higher energy 
levels.  
 
 
Conclusions:  
 

In the quantum free electron theory, though the energy levels are descrete, the spacing between 
consecutive energy level is very less and thus the distribution of energy levels seems to be continuous. 

 

The number of energy levels N(E) that are filled with electrons per unit energy increases parabolic 
ally with increase of energy E as shown in fig. 
 
 
Each energy level can provide only two states, namely, one for spin up and other for spin down and 

hence only two electrons can be exclusion principle. 

 

At T = 0, if there are N number of atoms, then we have N/2 number of filled energy levels and other 
higher energy levels will be completely empty. 

 

This (N/2) th energy level is the highest filled energy level is known as Fermi energy level (EFO). 

 

The electrons are filled in a given energ no two electrons can have the same set of four quantum 
numbers. 
 
At room temperature, the electrons within the range of KBT below the Fermi energy level will absorb 
thermal energy = KBT and goes to higher energy states with energy EF0 + KBT. 

 
 

 

11. DENSITY OF STATES 

 

The Fermi function F(E) gives only the probability of filling up of electrons on a given energy state, it 

does not give the information about the number of electrons that can be filled in a given energy state. 
To know that we should know the number of available energy states so called density of states.  

 

11.1. Definition  
 

Density of states Z(E)dE is defined as the number of available electron states per unit volume in 
an energy interval (dE). 

 

Explanation 

 

In order to fill the electrons in an energy state we have to first find the number of available 
energy states within a given energy interval. 

 

We know that a number of available energy levels can be obtained for various combinations of 

quantum numbers nx, ny, and nz . (i.e) n2 = n 2x + n 2y+ nz2 

 

Therefore, let us construct three dimensional space of points which represents the quantum numbers 
nx, ny, and nz as shown in fig. in this space each point represents an energy level. 



 

 

 
 
 

 

11.2. DERIVATION OF DENSITY OF ENERGY STATES 

 

To find the number of energy levels in a cubical metal piece and to find number of electrons 

that can be filled in a given energy level, l 
 

The sphere is further divided in to many shells and each of this shell represents a particular 
combination of quantum numbers (nx, n y, and nz) and therefore represents a particular energy value. 

 

Let us consider two energy values E and E + dE. The number of energy states between E 
and E + dE can be found by finding the number of energy states between the shells of the radius n and 

n + Δn, from the origin. 

  

The number of energy states within the sphere of radius n = 4/3 πn3 

Since nx, ny, and nz will have only positive values, we have to take only one octant of the sphere (i.e) 
1/8 th of the sphere volume. 
  
The number of available energy states within the sphere of radius 
 n = 1/8 [4/3 π n3]  
Similarly the number of available energy states within the sphere of radius  
n + dn n + dn = 1/8 [4/3 π (n+dn)3 ] 
 
The number of available energy states between the shells of radius n and n + dn (or) between the 
energy levels. 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 
 

 



 

 

 
 

11.3. CALCULATION OF CARRIER CONCENTRATION 

 

Let N(E) dE represents the number of filled energy states between the interval of energy dE . 
Normally all the energy states will not be filled. The probability of filling of electrons in a given 

energy state is given by Fermi function F(E). 
 
 
N(E) = Z(E)dE . F(E) ------ (7) 

 

Substituting equation (6) in equation (7), we get Number of filled energy states per unit volume N(E) 

= π / 2 [8m / h2 ] E ½ dE. F(E)---------- (8) 

 
N(E) is known as carrier distribution function (or) carrier concentration in metals.  
 
 
 

 

 

 

 

 



 

 

11.4. CALCULATION OF FERMI ENERGY  
Case (i) At T= 0K 

 
  
Case(ii) At T> 0K 

 

 
 
 
 
11.5. AVERAGE ENERGY OF AN ELECTRON AT OK Average energy = Total energy / Carrier 
Concentration 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


